
Portfolio Probe Reference Manual
Copyright 2003-2012 Burns Statistics Limited. All rights reserved

April 17, 2012

1

2 Topics documented:

Topics documented:

build.constraints . 3
Cfrag.list . 4
constraints.realized . 5
deport.portfolBurSt . 7
deport.randportBurSt . 9
head.randportBurSt . 10
pprobe.checkinput . 11
pprobe.verify . 12
random.portfolio.control . 13
random.portfolio.utility . 14
randport.eval . 17
seed.BurSt . 19
summary.portfolBurSt . 19
summary.randportBurSt . 21
trade.distance . 23
trade.optimizer . 24
trade.optimizer.pre . 38
trade.optimizer.control . 38
update.randportBurSt . 40
valuation.portfolBurSt . 42
valuation.randportBurSt . 44

Index 47

build.constraints 3

build.constraints Build Constraints for Optimization

Description

Builds a bounds object suitable for the input linear constraints, and ensures that the con-
straints are in a suitable form.

Usage

build.constraints(x, bounds = NULL)

Arguments

x required. Vector, matrix or data frame giving the information about the
constraint(s) for each asset. See the Details section for more.

bounds optional matrix of bounds. The rows correspond to the constraints. Rows
from this matrix that match constraint names that are created for x are
put into the output bounds matrix.

Value

a list with the following components:

lin.constraints

a matrix or data frame similar to the input x. This always has column
names so that the constraints can be identified.

bounds a matrix with two columns and as many rows as constraints represented
by the input x. Numeric columns of x embody one constraint. Columns
that are factors or character or logical represent as many constraints as
there are unique values in the column.

Details

Numeric linear constraints are created with numeric data. Categorical linear constraints
(and count constraints) are created with a factor, character data or logical data.

A data frame is required as the input x if more than one type of data is given.

Revision

This help was last revised 2010 January 02.

See Also

constraints.realized, trade.optimizer,

4 Cfrag.list

Examples

my.sc <- matrix(c("energy", "telecom", "energy", "Germany", "France",

"France"), nrow=3, ncol=2, dimnames=list(c("Asset 1", "Asset 2",

"Asset 3"), c("Sector", "Country")))

my.constr <- build.constraints(my.sc)

my.constr$bounds[,1] <- c(-.05, -.10, 0, .05)

my.constr$bounds[,2] <- c(.15, .15, .20, .55)

random.portfolio(100, prices,

lin.constraints=my.constr$lin.constraints,

lin.bounds=my.constr$bounds,

gross.value=1e6, net.value=c(-1e5, 6e5))

Cfrag.list Write a Fragment of a C Program

Description

Writes either the C declaration of items in a list, or initializes them with the contents of
the list.

Usage

Cfrag.list(x, file = NULL, item.num = c(3, 10, 5),
indent = c("\t", "\t\t"), declaration.only = FALSE,
long = FALSE, append = FALSE)

Arguments

x required. A list with names.

file either NULL or a character string. If NULL (or an empty string), then a
vector of characters is returned.

item.num length three vector giving the number of items per line for doubles, inte-
gers and characters.

indent length two vector giving the amount to indent declarations and the items
in the initialization.

declaration.only

logical flag. If TRUE, then the variables are declared but not given initial
values.

long logical flag. If TRUE, then integers are declared to be ”long”. If FALSE,
then integers are declared to be ”int”.

append logical flag. If TRUE, then the file is appended to; otherwise it is overwrit-
ten if it exists.

Value

if file is a non-empty character string, then the name of the file that is written. Otherwise,
a character vector of the declarations – each element representing a different line.

constraints.realized 5

Side Effects

if file is a non-empty character string, then the file is created, overwritten or appended.

Details

The type to declare is dependent on the storage mode of the component of x. You may
need to coerce components to get them to be declared the correct type.

Revision

This help was last revised 2009 September 21.

See Also

.C, storage.mode, as.double, as.integer, as.character, cat.

Examples

test.list <- list(adoub=as.double(rnorm(20)), anint=as.integer(92:109),

achar=c("aaa", "bbbb", "ccccc"))

Cfrag.list(test.list, file="test.c")

Cfrag.list(test.list[1], file="test.c", dec=TRUE)

Cfrag.list(test.list[-1], file="test.c", dec=FALSE, append=TRUE)

constraints.realized Show Violations of Linear Constraints

Description

Returns a list of matrices containing the bounds, the achieved level, plus the amount it
violates the nearest bound or else the proximity to the nearest bound if it is not vio-
lated. Components of the list correspond to linear (and count) constraints, and distance
constraints.

Usage

constraints.realized(portfol, lin.constraints, prices = portfol$prices,
lin.bounds = portfol$con.realized$linear[, c("lower", "upper"),
drop=FALSE], lin.trade = portfol$lin.table[,"trade"],
lin.abs = portfol$lin.table[,"abs"],
lin.style = portfol$lin.table[,"style"],
lin.direction = portfol$lin.table[,"direction"],
lin.riskfraction.col = portfol$lin.table[,"riskfrac.col"],
risk.fraction=portfol$risk.fraction, exclude.inf = FALSE)

6 constraints.realized

Arguments

portfol required. An object of class portfolBurSt (or a similar object).
lin.constraints

required. matrix or data frame describing the linear constraints.

prices named vector of prices containing (at least) all of the assets involved with
the constraints.

lin.bounds a two-column matrix giving the bounds for the constraints described by
the input lin.constraints.

lin.trade logical vector stating which columns of lin.constraints refer to con-
straints on the trade (as opposed to on the portfolio). This is replicated
if necessary.

lin.abs logical vector stating which columns of lin.constraints are absolute
constraints (constraints on the gross as opposed to the net). This is
replicated if necessary.

lin.style character vector stating the style of each of the linear constraints.

lin.direction numeric vector stating the direction of each of the linear constraints.
lin.riskfrac.col

numeric vector stating the column of risk.fraction to be used in the
constraint.

risk.fraction matrix giving the risk fraction values.

exclude.inf logical value stating whether or not (sub)constraints whose bounds are
both infinite should be dropped. If all bounds are infinite, this is effec-
tively forced to be FALSE.

Value

a list with zero or one components. The component corresponds to linear (plus count)
constraints.

The component consists of: a matrix with columns that are the bounds, the realized level,
the nearest bound if the constraint is not broken, and the distance to the nearest bound
if the constraint is broken. Exactly one of the latter two columns is non-missing for each
bound. Numbers that are negative mean that the lower bound is the reference, positive
numbers mean the upper bound is involved.

Details

If there are no bounds given explicitly or by default for the linear constraints, then infinite
bounds are created for all of the constraints and exclude.inf is forced to be FALSE.

This function produces the con.realized component of the output of trade.optimizer –
this component is part of the output of the summary for such objects.

Bugs

The function can get a little confused when called directly. This will be sorted out in a
future release.

Revision

This help was last revised 2012 April 10.

deport.portfolBurSt 7

See Also

build.constraints, summary.portfolBurSt, trade.optimizer.

Examples

my.sc <- matrix(c("energy", "telecom", "energy", "Germany", "France",

"France"), nrow=3, ncol=2, dimnames=list(c("Asset 1", "Asset 2",

"Asset 3"), c("Sector", "Country")))

my.constr <- build.constraints(my.sc)

my.constr$bounds[,1] <- c(-.05, -.10, 0, .05)

my.constr$bounds[,2] <- c(.15, .15, .20, .55)

op <- trade.optimizer(prices, varian,

lin.constraints=my.constr$lin.constraints,

lin.bounds=my.constr$bounds, gross.value=1e6,

net.value=c(-1e5, 6e5))

constraints.realized(op, my.constr$lin.constraints,

bounds=my.constr$bounds)

op2 <- trade.optimizer(prices, varian, gross.value=1e6,

net.value=c(-1e5, 6e5))

view values for unconstrained portfolio

constraints.realized(op2, my.constr$lin.constraints)

deport.portfolBurSt Write Optimization Results to a File

Description

Creates either a csv (comma separated) file or a txt (tab separated) file that contains the
optimized portfolio, the trade, the existing portfolio, or all three.

Usage

deport.portfolBurSt(x, filename = deparse(substitute(x)), what = "all",
multiplier = 1, to = "csv", blank = "")

Arguments

x required. An object of class "portfolBurSt" (which is an optimized
portfolio created by trade.optimizer).

filename a character string giving the name of the file to be created, or the empty
string (""). The extension (”csv”or ”txt”) need not be a part of the string.

what a character string partially matching one of the following: "all", "trade",
"optimal", "new.portfolio", "existing".

multiplier either a single number, or a named vector where the names match the
assets that are involved. This is used, for example, when the optimization
was performed in terms of lots, but the file is desired to be in shares.
Another use is to produce monetary values in the file.

8 deport.portfolBurSt

to a character string partially matching one of: "csv", "txt". This controls
whether the file is comma-separated or tab-separated.

blank a character string giving the value to be placed in locations that do not
occur (in the case when what = "all"). The default is no character at
all – the other logical choice for this is "0".

Value

a character string giving the name of the file created; or NULL if filename is the empty
string.

Side Effects

the file of the specified name is created or overwritten. Except when filename is the empty
string, then the values are printed.

Details

The "optimal" and "new.portfolio" choices for the what argument are the same thing.

Revision

This help was last revised 2012 April 17.

See Also

trade.optimizer, write.table.

Examples

optim1 <- trade.optimizer(eq.prices, varian, long.only=TRUE,

gross.value=1e6, ntrade=60, existing=cur.port)

create file named optim1.csv

deport(optim1)

print to screen instead

deport(optim1, filename="")

optimization in lots (of 100), file in shares

deport(optim1, multiplier=100)

write monetary values in the file

deport(optim1, multiplier=current.prices)

deport(optim1, what="opt", to="txt")

deport(optim1, file="opt1zero", what="all", blank="0")

deport.randportBurSt 9

deport.randportBurSt Write Random Portfolios to a File

Description

Creates a file of the random portfolios represented by the object given it.

Usage

deport.randportBurSt(x, filename = deparse(substitute(x)),
what = "horizontal.portfolio", multiplier = 1,
names.assets = NULL, to = "csv", blank = "", append = FALSE,
subset = NULL)

Arguments

x required. Object of class "randportBurSt" (result of random.portfolio
and friends).

filename a character string giving the name of the resulting file, or the empty string
(""). The extension (”csv” or ”txt”) need not be a part of the string.

what a character string describing the layout of the file. This must partially
match either "horizontal.portfolio" or "vertical.portfolio".

multiplier either a single number, or a numeric vector with names. If a vector, the
names should be the names of any assets that may appear in x, and the
values give the amount by which to multiply each value in x.

names.assets a character vector providing the names of all assets to be represented in
the file. The default is to use the union of the assets that are in the
random portfolios.

to a character string partially matching one of: "csv", "txt". This controls
whether the file is comma-separated or tab-separated.

blank a character string giving the value to be placed in locations that do not
occur. The default is no character at all – the other logical choice for this
is "0".

append logical flag. If FALSE, then the file is created or overwritten. If TRUE
(which is only allowed for horizontal portfolios), then the file is appended.

subset if given, a vector that subscripts the random solutions.

Value

a character string of the name of the file created; or NULL if filename is the empty string.

Side Effects

the file is created, overwritten or appended. Except when filename is the empty string,
then the values are printed.

Revision

This help was last revised 2012 April 17.

10 head.randportBurSt

See Also

random.portfolio.

Examples

randport1 <- random.portfolio(1000, prices, varian, long.only=TRUE,

gross.value = 1e6, bench.constraint=c(spx=.04^2/252),

lin.constraints=cntrysect.conmat, lin.bounds=cntrysect.bounds)

create file randport1.csv

deport(randport1)

print to screen instead

deport(randport1, filename="")

generation in lots, file in shares

deport(randport1, mult=100)

write monetary values in file

deport(randport1, mult=prices)

tab-separated file of vertically oriented portfolios

all asset names from prices used

deport(randport1, to="txt", what="vert", names=names(prices))

head.randportBurSt Portion of a Random Portfolio Object

Description

Returns the first few random portfolios or the last few random portfolios.

Usage

head.randportBurSt(x, n = 6)
tail.randportBurSt(x, n = 6)

Arguments

x an object of class randportBurSt (often created by random.portfolio).

n the number of items to select (this is the argument to the default method).
This can be a negative number if the default method that is visible allows
it.

Value

an object like the input x but shorter (usually).

Details

These are methods of the generic functions head and tail. The output of these functions
retains the class attribute. In contrast, regular subscripting will lose the class and the result
will be a plain list.

pprobe.checkinput 11

Revision

This help was last revised 2010 January 02.

See Also

random.portfolio, summary.randportBurSt.

Examples

randport1 <- random.portfolio(100, prices, varian, long.only=TRUE,

bench.constr=c(spx=.04^2/252), lin.constraints=cntrysect.conmat,

lin.bounds=cntrysect.bounds, gross.value=1e6)

head(randport1, 4) # first 4 random portfolios

randport1[1:4] # same values but class is lost

tail(randport1)

pprobe.checkinput Check Some Input Arguments Remain Unchanged

Description

This is primarily an internal function and seldom of interest for direct use.

Checks to see that two lists are the same. In practice these are lists of portions of some
specific arguments.

Usage

pprobe.checkinput(new, old, exclude = NULL, suppress.warning = FALSE)

Arguments

new a list of the newly created argument checks.
old a list of the original argument checks.
exclude either NULL or a character vector of the names of the arguments that

should not be checked.
suppress.warning

logical value: if TRUE, then there is no warning issued when a difference
is found.

Value

a single logical value that is TRUE if there were no changes.

Side Effects

If a change is found and suppress.warning is FALSE, then a warning message is issued.

Details

The checkinput components only have a few values in them, so it is possible for values to
have changed and the check not to notice.

12 pprobe.verify

Revision

This help was last revised 2009 December 29.

Examples

opt1 <- update(opt0)

pprobe.checkinput(opt1$checkinput, opt0$checkinput)

a warning is issued if prices, variance, expected.return

or existing have changed from the original call

pprobe.verify Cursory Test of Portfolio Probe Installation

Description

Tests if all the functions exist, and if one particular problem works okay.

Usage

pprobe.verify()

Value

a logical value, returned invisibly. If all seems well, then the value is TRUE. When something
is wrong, then an error will have occurred.

Side Effects

information is printed on version numbers.

If the function finds something wrong, an error occurs.

Revision

This help was last revised 2009 November 24.

Examples

pprobe.verify() # versions are printed

random.portfolio.control 13

random.portfolio.control

Optimizer Controls for Random Portfolios

Description

Sets parameters that control the optimization of random.portfolio.

Usage

random.portfolio.control(iterations.max = 20, miniter = 5,
fail.iter = 5, gen.fail = 4, init.fail = 4,
throw.error = TRUE, lockcon = FALSE,
enforce.max.weight = TRUE, trace = FALSE,
save.iterhistory = FALSE, safe.mode = TRUE, ...)

Arguments

iterations.max

integer giving the maximum number of iterations to perform in a single
try at a portfolio.

miniter integer giving the minimum number of iterations to be tried in each go
even if fail.iter says to give up.

fail.iter integer giving the maximum number of consecutive iterations that fail
to improve the solution without the algorithm stopping. For example, if
fail.iter is 3, then the algorithm continues with 3 consecutive failures
but stops upon the 4th consecutive failure.

gen.fail integer limiting the total number of failures allowed in a call. The maxi-
mum number of failures allowed is gen.fail times number.rand.

init.fail integer giving the number of failures allowed before the first success at
finding a portfolio satisfying all the constraints. If the number of initial
failures is violated, then it quits.

throw.error logical value; if TRUE, then failing to create any portfolios that satisfy the
constraints will cause an error. If FALSE, then no error happens and you
can tell that no satisfactory portfolios were found because the length of
the result is zero.

lockcon logical value; if TRUE, then the constraint penalties are used as given.
Otherwise the penalties for some constraints may be changed to try to
find portfolios more efficiently.

enforce.max.weight

logical value; if TRUE, then forced trades are automatically created if any
positions in the existing portfolio break their maximum weight constraint.
This doesn’t absolutely guarantee that the constraints will be met, but
they generally will be unless the gross value is given a lot of latitude.

trace logical value. If TRUE, then information on the progress of the search is
printed. This is often ignored under Windows.

save.iterhistory

logical value; if TRUE, then a vector will be returned containing the value
of the objective at each iteration of the algorithm for the final random
portfolio created.

14 random.portfolio.utility

safe.mode logical value; if FALSE (not recommended), then some errors may be by-
passed. The reason for this option is to allow possible workarounds for
bugs if they appear.

... additional arguments for compatibility with trade.optimizer.control
(because the two tasks use the same code internally).

Value

a list with the following components:

icontrol vector of the integer-valued control parameters.

dcontrol vector of the double precision control parameters.

aux vector of the auxiliary control parameters.

Details

ERRORS. Setting the throw.error argument to FALSE can be useful when doing series
of random portfolios, as when imitating a backtest. It can be the case that the desired
constraints are infeasible – you can relax some constraints if this proves to be true and try
again.

Revision

This help was last revised 2012 April 17.

See Also

random.portfolio, random.portfolio.utility, trade.optimizer.control.

Examples

it is unlikely to be useful to call this function directly

random.portfolio.utility

Generate Random Portfolios with a Utility Constraint

Description

Returns a list of portfolios that satisfy the constraints imposed, and includes a constraint
on the utility.

Usage

random.portfolio.utility(number.rand = 1, objective.limit, prices,
variance = NULL, expected.return = NULL, gen.fail = 4,
objfail.max = 1, ..., out.trade = FALSE, verbose = FALSE)

random.portfolio.utility 15

Arguments

number.rand the number of random portfolios desired. This can be zero (in which case
NULL is returned), but can not be negative.

objective.limit

a number that gives the upper bound for the objective. The objective is
the negative of the utility (except for minimum variance but you should
use random.portfolio for this utility).

prices the vector of prices. See the trade.optimizer help file for the description.

variance the variance. See the trade.optimizer help file for the description.

expected.return

the expected returns. See the trade.optimizer help file for the descrip-
tion.

gen.fail a single number. The maximum number of failures that are allowed is
gen.fail times number.rand.

objfail.max a single number – the maximum number of times that a try can fail to
achieve the objective limit.

... arguments of trade.optimizer need to be given that specify the con-
straints and the utility.

out.trade logical value stating if it should be the random trades (TRUE), or the
resulting random portfolios (FALSE) that are to be returned. The full
name of this argument needs to be given.

verbose a logical value. If TRUE, then messages about the progress are printed.
The full name of this argument needs to be given.

Value

a list of the random portfolios or trades. This has attributes:

call an image of the call that created the object.

timestamp a character string giving the time and date of creation.

seed the random seed for the generator internal to the C code for the first try.

version a vector stating the versions of C and S code used. This attribute is
suppressed when the object is printed.

checkinput a list with components prices, variance, expected.return and existing
that contains a few values of each input. This is used in randport.eval
and update to make sure that the data for these inputs are what you
expect they are. This attribute is suppressed when the object is printed.

funevals the value NA. This attribute is suppressed when the object is printed.

class "randportBurSt". There are several methods for this class.

Side Effects

the S language random seed is created or changed.

16 random.portfolio.utility

Details

It is possible that fewer portfolios are generated than requested. There is a warning for
this.

There are two types of failure:

1) The try can fail to decrease the objective enough. If this happens on the first try and
objfail.max=1 (the default), then an error occurs. Otherwise, computation stops if the
number of such failures is objfail.max – the result contains the portfolios or trades that
have been successful (which theoretically could be none).

2) The try could achieve the necessary objective but fail on other constraints. This is likely
to be a rare event.

Although random.portfolio.utility and random.portfolio return objects that are es-
sentially the same, their internal operation is quite different. random.portfolio calls the
underlying C code once and uses a search that is optimized to find portfolios that satisfy
constraints. In contrast random.portfolio.utility makes a call to trade.optimizer on
each try. (The starting point is made totally random and it is told to stop once it achieves
the objective limit, but is otherwise the same as ordinary calls to trade.optimizer.)

The seed argument is ignored. If you want to have reproducible results, then you need to
set the S language seed.

There are randportBurSt methods for several generic functions.

Bugs

For safety, the start.sol argument is ruled out. Unfortunately, an error is thrown even if
start.sol is given but NULL.

Revision

This help was last revised 2012 April 17.

See Also

trade.optimizer, random.portfolio, randport.eval, deport.randportBurSt, summary.randportBurSt,
valuation.randportBurSt, head.randportBurSt, update.randportBurSt.

Examples

randport1 <- random.portfolio.utility(100, objective.limit=-.2, prices,

varian, expected.return=alphas, long.only=TRUE,

bench.constr=c(spx=.04^2/252), lin.constraints=cntrysect.conmat,

lin.bounds=cntrysect.bounds, gross.value=1e6)

randtrade1 <- random.portfolio.utility(100, objective.limit=-.2, prices,

varian, expected.return=alphas, long.only=TRUE,

bench.constr=c(spx=.04^2/252), lin.constraints=cntrysect.conmat,

lin.bounds=cntrysect.bounds, gross.value=1e6, out.trade=TRUE)

now use it

randalpha1 <- numeric(length(randtrade1))

for(i in 1:length(randtrade1)) {

randalpha1[i] <- trade.optimizer(prices, varian, long.only=TRUE,

bench.constr=c(spx=.04^2/252), lin.constraints=cntrysect.conmat,

lin.bounds=cntrysect.bounds, gross.value=1e6, funeval=0,

start=randtrade1[[i]])$alpha.values

randport.eval 17

}

same thing again

randalpha1 <- unlist(randport.eval(randtrade1, keep="alpha.values"))

and again

randalpha1 <- unlist(randport.eval(randport1, keep="alpha.values"))

randport.eval Evaluate Each Random Portfolio

Description

Takes a random portfolio object and evaluates each individual portfolio. Any set of com-
ponents of the output of trade.optimizer can be saved.

Usage

randport.eval(x, keep = c("results", "alpha.values", "var.values",
"utility.values"), subset = NULL, do.warn = FALSE,
additional.args = NULL, checkinput = TRUE,
envir = parent.frame(), FUN = NULL, ...)

Arguments

x required. An object that is the result of a call to random.portfolio or
random.portfolio.utility.

keep character vector of component names of the output of trade.optimizer.
If this is NULL, then the slightly ironic result is that all components are
kept. Values are allowed to partially match the names of optimization
object components.

subset either NULL or a vector to subscript along the components of x.
do.warn the control for the warnings coming from trade.optimizer. The default

is FALSE, meaning all warnings are turned off that can be turned off. The
two other likely values are: TRUE (turn on all warnings), and NULL (use
the do.warn value that was in effect to start with). (A value of NULL here
is not necessarily the same as NULL in trade.optimizer.)
This can be any value that the do.warn argument to trade.optimizer
will accept.

additional.args

list of arguments to trade.optimizer either not in the random.portfolio
call or that should be changed. In the latter case, argument names need
to be given exactly the same as in the original – that is, with the same
amount of abbreviation.

checkinput a logical value. If TRUE, then a (fallible) check is made to see if there is a
change in the value of price, variance, expected.return or existing
between the current computation and the original computation. There is
no warning about arguments that are in additional.args.

envir the environment where the objects used to generate the random portfolios
are going to be found. This is nonsensical to S+.

FUN a function or a character string naming a function. Each portfolio trade
object will be passed to the function.

... additional arguments given to FUN.

18 randport.eval

Value

a list as long as x (or by what is indicated by subset if given).

If FUN is not given, each component is a list containing the components of the output of
trade.optimizer listed in keep.

If FUN is given, then each component is the result of FUN applied to the portfolio trade
object for the component.

Details

The objects that are involved (like prices and variances) need to be available in the current
session, and presumably should be unchanged.

If you get a warning about a ”checkinput difference” for one or more arguments, then you
probably want to add those arguments to additional.args. Problems like this can arise
because the arguments for the original computation were dependent on the iteration in a
loop. Outside that original loop the value may be interpreted differently (or cause an error).

Bugs

The default value of out.trade in random.portfolio (and random.portfolio.utility)
must remain FALSE in order for this to work properly.

The utility.values component will be wrong (zero) if expected.return is not given and
utility is not specified.

Revision

This help was last revised 2012 April 17.

See Also

random.portfolio, trade.optimizer, random.portfolio.utility.

Examples

randport1 <- random.portfolio(100, prices, variance=varian,

long.only=TRUE, bench.constr=c(spx=.04^2/252),

lin.constraints=cntrysect.conmat,

lin.bounds=cntrysect.bounds, gross.value=1e6)

randeval1 <- randport.eval(randport1)

look at linear constraints of the random portfolios

randlincon1 <- randport.eval(randport1, keep="con.realized")

returns the above plus more

randsummary <- randport.eval(randport1, FUN=summary)

vector of weight differences

rdist <- unlist(randport.eval(randport1, FUN = function(x)

trade.distance(x, some.portf, prices=privec, scale="weight")))

seed.BurSt 19

seed.BurSt Create Random Seed for Burns Statistics Functions

Description

Creates a random seed that is used internally in Burns Statistics functions.

Usage

seed.BurSt(n = NULL)

Arguments

n if this has length, then set.seed is called with this as its argument.

Value

a numeric vector that is the proper length and structure for a random seed for the random
generator that is internal to several Burns Statistics functions.

Side Effects

The S language random seed .Random.seed is created or changed.

Details

The random generator is an implementation of the Mersenne Twister.

See http://www.math.keio.ac.jp/~matumoto/

Revision

This help was last revised 2009 November 09.

summary.portfolBurSt Information on Portfolio Trade Objects

Description

The summary method shows pertinent information about the object. The print method
shows most of the components of the object.

Usage

summary.portfolBurSt(object, prices = object$prices)
print.portfolBurSt(x, ...)

Arguments

object required. An object of class "portfolBurSt", created by trade.optimizer.
x required. An object of class "portfolBurSt", created by trade.optimizer.
prices a named vector of prices so that the portfolio can be valued.
... additional arguments to print.

20 summary.portfolBurSt

Value

summary returns a list with the following components:

results vector giving the objective, the negative utility (including costs), the cost
of the trade, and the penalty imposed for broken constraints.

objective.utility

character string stating the utility being optimized.

alpha.values vector of optimal expected returns.

var.values vector of optimal variances.
number.of.assets

a vector giving the size (number of names) of the existing portfolio, the
size of the trade, the size of the new portfolio, the number of positions
that are opened, the number of positions that are closed, the number
of assets in the universe, the number of tradable assets, plus two more
elements that might have affected the number of tradable assets. The
select.universe element says how long the universe.trade argument
(effectively) was, and the positions.notrade element says how many
assets the positions argument disallows from trading.

opening.positions

the asset names of the positions that are opened.
closing.positions

the asset names of the positions that are closed.
valuation.new.portfolio

the gross, net, long and short values of the new portfolio. This is present
only if there are prices.

valuation.trade

the gross, net, long and short values of the trade. This is present only if
there are prices.

valuation.trade.fraction.of.gross

the gross, net, long and short values of the trade divided by the gross
value of the portfolio. This is present only if there are prices.

violated vector of character strings stating which types of constraints were violated.
This is absent if all constraints were satisfied.

risk.fraction

a matrix giving the fraction of variance accountable to each asset. This
is present only if the risk.fraction argument was specified in the opti-
mization.

con.realized the realization of constraints. This is present only if linear and/or distance
constraints were specified.

lin.trade logical vector stating if linear constraints were on the trade or the port-
folio. This is present only if linear constraints were specified.

lin.abs logical vector stating if linear constraints were on the gross or the net.
This is present only if linear constraints were specified.

lin.style vector of character strings stating the style of the linear constraints, that
is, "weight", "value" or "count". This is present only if linear con-
straints were specified.

lin.direction

numeric vector stating the direction of the linear constraints. This is
present only if linear constraints were specified.

summary.randportBurSt 21

dist.style vector of character strings stating the style of the distance constraints,
that is, "weight", "value", "shares", etc. This is present only if distance
constraints were specified.

dist.trade logical vector stating if distance constraints were on the trade or the
portfolio. This is present only if distance constraints were specified.

dist.utility logical vector stating if the distances are used in the utility or constrained.
This is present only if distance constraints were specified.

print invisibly returns the input x.

Side Effects

print causes a list of some but not all of the components of the object to be printed.

Details

These are methods of summary and print for objects of class "portfolBurSt".

Revision

This help was last revised 2011 March 24.

See Also

trade.optimizer, constraints.realized, valuation.portfolBurSt.

Examples

op1 <- trade.optimizer(eq.prices, varian, long.only=TRUE,

gross.value=1e6)

op1 # print the object

names(op1) # see names of the object, hence what is left out

summary(op1)

summary(op1, price=new.prices)

summary.randportBurSt

View Characteristics of Random Portfolios

Description

The summary method counts the number of portfolios of each size, and the number of times
each asset appears.

Usage

summary.randportBurSt(object)
print.randportBurSt(x, ...)

22 summary.randportBurSt

Arguments

object an object of class randportBurSt as created by random.portfolio or
random.portfolio.utility.

x an object of class randportBurSt as created by random.portfolio or
random.portfolio.utility.

... additional arguments to print may be given.

Value

the summary method returns a list with the following components:

port.size a vector whose names give sizes of portfolios, and whose values give the
number of portfolios of that size.

count.assets a vector stating the number of occurrences of each asset.

the print method returns its input invisibly.

Side Effects

the print method prints the object, including its attributes. It does, however, only print a
few elements of the seed attribute, and does not print the funevals, version or checkinput
attributes.

Details

These are methods of summary and print for objects of class "randportBurSt".

Revision

Last revised 2010 January 02.

See Also

random.portfolio, random.portfolio.utility, valuation.randportBurSt, head.randportBurSt.

Examples

randport1 <- random.portfolio(100, prices, varian, long.only=TRUE,

bench.constr=c(spx=.04^2/252), lin.constraints=cntrysect.conmat,

lin.bounds=cntrysect.bounds, gross.value=1e6)

randport1 # prints the random portfolios

summary(randport1)

trade.distance 23

trade.distance Trade distance

Description

Returns the trade distance between two portfolios.

Usage

trade.distance(x, y, prices = NULL, scale = TRUE, tol = 1e-6)

Arguments

x an object that is the result of trade.optimizer or a named vector rep-
resenting a portfolio.

y an object that is the result of trade.optimizer or a named vector rep-
resenting a portfolio.

prices a named vector of prices of the assets in the portfolios. If NULL, then the
prices components from x and/or y are used.

scale either a logical value or a string that is (an abbreviation of) one of: "x",
"y", "min", "max", "mean", "weight". If FALSE, then the answer is the
value (buys plus sells) of the trade. If TRUE, then the trade value is divided
by the gross value of x. If a string, then the trade value is divided by the
gross value of one of the portfolios, by the minimum gross value, by the
maximum gross value, or by the mean gross value.
If "weight", then the weights are found first and the differences are taken
afterwards – in this case the distance can be zero if the gross values of
the two portfolios differ. Also in this case, "x" and/or "y" can be given
as weight vectors – if the sum of absolute values is within tol of 1, then
the vector is considered a weight vector.

tol a single number giving the tolerace for testing if a vector is a weight vector,
and the relative tolerance for two prices for the same asset being equal.

Value

a number. If scaling is done and the gross values of the two portfolios are equal, then the
maximum possible is 2.

Revision

This help was last revised 2010 April 28.

See Also

trade.optimizer.

Examples

op1 <- trade.optimizer(prices, varmat, gross.value=9e7,

long.only=TRUE)

op2 <- update(op1, seed=NULL)

trade.distance(op1, op2)

24 trade.optimizer

trade.optimizer Select an Optimal Trade for a Portfolio

Description

Finds an approximately optimal portfolio trade. The required inputs are the prices, and
a sufficient indication of the monetary size of the portfolio or the turnover. Typically a
variance matrix and possibly a vector of expected returns are given as well. Almost always
only integer values are traded, thus round lotting is automatically done if the prices are
given for lots. Other constraints include the number of assets traded, and the number of
assets in the optimal portfolio.

Usage

trade.optimizer(prices, variance=NULL, expected.return=NULL,
existing=NULL, gross.value=NULL, net.value=NULL, long.value=NULL,
short.value=NULL, turnover=NULL, long.only=FALSE, max.weight=1,
universe.trade=NULL, lower.trade=NULL, upper.trade=NULL,
risk.fraction=NULL, rf.style="fraction", rf.loc=NULL, ntrade=NULL,
port.size=NULL, threshold=NULL, forced.trade=NULL, positions=NULL,
tol.positions=0, lin.constraints=NULL, lin.bounds=NULL,
lin.trade=FALSE, lin.abs=TRUE, lin.style="weight", lin.direction=0,
lin.rfloc=NULL, alpha.constraint=NULL, var.constraint=NULL,
bench.constraint=NULL, dist.center=NULL, dist.style="weight",
dist.bounds=NULL, dist.trade=FALSE, dist.utility=FALSE,
dist.prices=NULL, sum.weight=NULL, limit.cost=NULL, close.number=NULL,
utility=NULL, risk.aversion=1, benchmark=NULL, bench.trade=FALSE,
bench.weights=NULL, long.buy.cost=NULL,
long.sell.cost=long.buy.cost, short.buy.cost=long.buy.cost,
short.sell.cost=long.buy.cost, cost.par=NULL, ucost=1,
scale.cost="gross", start.sol=NULL, allowance=.9999, do.warn=NULL,
penalty.constraint=1000, quantile=0.5, dest.wt=NULL,
utable=NULL, atable=NULL, vtable=NULL, dumpfile="", ...,
seed=.standard.seed.BurSt, control=trade.optimizer.control,
identity=NULL)

Arguments

prices required. Named vector of prices of the assets. This vector determines
the assets to be used in the problem – other inputs such as variance and
expected.return may contain information on assets in addition to the
ones in prices. If there is one or more benchmarks, then these assets
do not need to be in prices. (But if benchmark trading is allowed, the
benchmarks do need to be in prices.)

variance numeric matrix or three-dimensional array. This may have assets in ad-
dition to those named in prices – such assets will be ignored (except for
benchmarks). If a three-dimensional array, then each variance matrix is
in a different slice of the third dimension.
Benchmarks do not need to be given in the variance when their weights
(of assets in the variance) are given in bench.weights.

trade.optimizer 25

Alternatively, compact forms of variances may be given via a list with
special components (see the User’s Manual) – this is very seldom useful.

expected.return

numeric vector or matrix of expected returns of the assets. If a matrix,
then each vector of expected returns is in a different column. This need
not have (row) names, but it is generally advised. If it does have asset
names, then it can contain information for assets in addition to those in
prices.

existing named vector of units (shares or lots) of the existing portfolio. The prices
vector must contain all of the assets in existing. If this is the result of
a call to trade.optimizer – that is, an object of mode portfolBurSt
– then the new.portfolio component is used as the vector. A random
portfolio object containing a single portfolio is also allowed. If not given,
then it is presumed there is no existing portfolio (only cash).
start.sol (suggested trade for the optimizer) is sometimes confused with
existing (initial portfolio). Don’t confuse them.

gross.value numeric vector of length one or two giving the desired gross value of the
optimal portfolio. If of length two, this is a range of values that are
allowed. If of length one, then the lower bound is created by multiplying
by allowance. There is more on this argument in the Details section.

net.value numeric vector of length two (or possibly one) giving the range that the
net value may have. There is more on this argument in the Details section.

long.value numeric vector of length one or two giving the desired sum of the values
of the long positions of the optimal portfolio. If of length two, this is a
range of values that are allowed. If of length one, then the lower bound
is created by multiplying by allowance. There is more on this argument
in the Details section.

short.value numeric vector of length one or two giving the desired sum of the value
of the short positions of the optimal portfolio. If of length two, this is a
range of values that are allowed. If of length one, then the lower bound
is created by multiplying by allowance. (This is meant to be positive
numbers, but negative numbers work as well.) There is more on this
argument in the Details section.

turnover numeric vector of length one or two giving the desired sum of the absolute
value of all the trades. If of length one, then the maximum turnover;
otherwise the range of allowable trade values. There is more on this
argument in the Details section.

long.only logical value stating if the optimal portfolio is restricted to be long-only
(no negative numbers of units of assets).

max.weight a numeric vector containing numbers between zero and one giving the
maximum weight allowed in the gross value for the assets. If this is an
unnamed vector, then it is replicated to have length equal to the num-
ber of assets. If named, then it bounds those specified assets. NULL is
(grudgingly) allowed to mean no maximum weight constraints.

universe.trade

character vector giving the names of all the assets that are allowed to be
traded. Assets not named here will be disallowed from trading. If NULL,
then this does not impose a limit on the assets that are allowed to trade.

lower.trade numeric vector of the desired lower bound on the units to trade in the
assets. If this is an unnamed vector, then it is replicated to have length

26 trade.optimizer

equal to the number of assets. If named, then it bounds just those specified
assets. Bounds may automatically be placed on the assets from other
information about the problem. See also the max.weight argument and
the positions argument. There is more on this argument in the Details
section.

upper.trade numeric vector of the desired upper bound on the units to trade in the
assets. If this is an unnamed vector, then it is replicated to have length
equal to the number of assets. If named, then it bounds just those specified
assets. Bounds may automatically be placed on the assets from other
information about the problem. See also the max.weight argument and
the positions argument. There is more on this argument in the Details
section.

risk.fraction a number, a vector, a two-column matrix, a three-dimensional array with
two columns, or NULL. This specifies constraints on some measure of the
variance attributable to each asset. The rf.style argument controls
what is being constrained.
The maximum allowed is constrained for all assets by a single number,
or for named assets in a vector. If a matrix is given, then the first col-
umn is the minimum allowed and the second column is the maximum
allowed – the rows should be named with asset ids (not all assets need be
constrained).
If there are multiple combinations of variances and benchmarks or mul-
tiple risk fraction styles are used, then a three-dimensional array can be
used to specify constraints for as many of the situations as desired. See
the rf.loc argument.

rf.style character vector giving the style of each risk fraction constraint. That
is, it might say that some are value constraints rather than fraction
constraints. The length of this should either be 1 or the number of
risk fraction constraints. The allowable values are (abbreviations of):
"fraction", "value", "marginalbench", "valmargbench", "corport",
"abscorport", "incorport", "absincorport".
"fraction" constrains the fraction of variance attributed to each of the
assets. "value" constrains the variance attributed to each of the as-
sets. "marginalbench" constrains the fraction of variance relative to the
marginal impact of the benchmark. "valmargbench" constrains the vari-
ance relative to the marginal impact of the benchmark.
"corport" constrains the correlation of assets to the portfolio. "abscorport"
constrains the absolute correlation of assets to the portfolio.
"incorport" and "absincorport" are like "corport" and "abscorport",
respectively, except that the constraints only apply to assets that are in
the portfolio.

rf.loc numeric vector giving the zero-based columns in vtable that each risk
fraction constraint refers to. This should be NULL (interpreted as 0), a
single number, or of length equal to the number of risk fraction con-
straints.

ntrade an integer vector of length one or two. If length one, an integer giving the
maximum number of assets to trade. If length two, then the minimum and
maximum number of assets to trade. if NULL, then there is no constraint
on the number of assets traded.

trade.optimizer 27

port.size an integer or a vector of two integers. If a single integer, the upper bound
on the desired number of assets in the optimal portfolio. If two integers,
then the allowed range of the number of assets in the optimal portfolio.

threshold a vector (with names); or a matrix with 1, 2, 3 or 4 columns, and row
names. The first two columns give the minimum amount to be traded for
(some of) the assets if the asset is traded at all. If a vector or one-column
matrix, then the constraint is considered to be symmetric for buying and
selling. If a two-column matrix, then the minimum of the two numbers
for each asset can not be positive, and the maximum of the two numbers
can not be negative.
The third and fourth columns give the minimum number of units (shares
or lots) allowed in the portfolio if the asset is in the portfolio at all.
A three-column matrix can only be given for long-only portfolios, in which
case the third column is the minimum number of units for the assets if
the asset is in the portfolio. Otherwise, the third column should be non-
positive.
There is no requirement for row names if all of the rows are the same.

forced.trade a named numeric vector giving a minimum amount to trade for specific as-
sets (which are identified by the names of the vector). If you want to trade
an exact amount, you need to also use upper.trade or lower.trade.

positions a numeric matrix with 2, 4 or 8 columns giving the monetary value of
positions that are allowed for each asset (rows). The first two columns
give the minimum and maximum amount of money allowed in the portfolio
for each of the assets. The third and fourth columns give the minimum
and maximum amount of money that can be traded. Forced trades can be
implied. If there is at least one NA in the first 4 columns in a row, then that
asset is not allowed to trade (and other values in that row are ignored).
Columns 5 through 8 are for threshold constraints: columns 5 and 6 give
the minimum money amounts to trade the assets, and columns 7 and 8
give the minimum money amounts allowed in the portfolio. The matrix
must have row names. The assets need not match the assets in prices – if
there is a difference, then there is a warning unless the positions.names
element of do.warn is set to FALSE.

tol.positions a number giving a monetary value of the tolerance for existing positions
to break the portfolio constraints given in the positions argument. For
example if the value for an asset in the second column of positions is
2000 and the value of the existing position in that asset is 2010, then a
sell will be forced if tol.positions is less than 10 but not if it is more
than 10.

lin.constraints

a matrix or data frame describing the linear (and/or count) constraints
to be placed on the portfolio and/or trade. Factors or characters (which
are coerced to factors) represent as many constraints as there are levels
in the factor. It is often easiest if this and lin.bounds are the result of
a call to build.constraints. This may correspond to assets in addition
to those in the current problem, but must contain information for all of
the assets that are in the current problem.

lin.bounds a two-column matrix with rows that correspond to the constraints rep-
resented by lin.constraints (not necessarily in the same order). The
values of the bounds are in terms that are controlled by lin.style. If
lin.constraints is given, then this argument must also be given. It is

28 trade.optimizer

easiest to initialize this with a call to build.constraints. There must
be rows for all of the given constraints, but additional rows may also be
present.

lin.trade a logical vector (replicated to have length equal to the number of columns
in lin.constraints) which determines if the constraint is to be applied
to the trade (TRUE), or the resulting portfolio (FALSE). Thus the same
constraint can be in the constraint matrix more than once, but they need
to have different names.

lin.abs a logical vector (replicated to have length equal to the number of columns
in lin.constraints). For those elements that are TRUE, the correspond-
ing constraint uses the absolute value (of the weight or variance or the
amount of money) for each asset (in the portfolio or trade).
WARNING: the default for this changed – it is now TRUE. Previous to
version 1.04 the default was FALSE.

lin.style a character vector (replicated to have length equal to the number of
columns in lin.constraints). Elements must be (an abbreviation of)
one of: "weight", "value", "count", "varfraction", "varvalue", "varmbfraction",
"varmbvalue".
For ”weight” constraints, the bounds are expressed in weights (position
value divided by gross value of the portfolio).
For ”value” constraints, the bounds are expressed in monetary units. For
”count” constraints, the bounds are expressed in the number of assets;
count constraints must be categorical, not numeric.
For ”varfraction” and ”varmbfraction”, the bounds are in fractions of the
variance; the latter being the variance relative to the marginal impact of
the benchmark.
For ”varvalue” and ”varmbvalue”, the bounds are in variance.

lin.direction a numeric vector (replicated to have length equal to the number of columns
in lin.constraints). Allowable values are 0, 1 and -1. If 0, all assets
are counted. If 1, only long assets are counted. If -1, only short assets are
counted.

lin.rfloc a numeric vector or NULL (which is interpreted as 0). This gives the
zero-based columns of vtable for the linear constraints that are of the
risk fraction type. This is replicated to the number of linear constraints
(number of columns in lin.constraints).

alpha.constraint

a numeric vector giving lower bounds for the alphas (expected returns), or
a two-column matrix giving lower and upper bounds. If this has names,
then they should coerce to integers that are one less than the column
number of the desired column in the input or default atable. Without
names, the first column (or columns) are assumed.

var.constraint

a numeric vector giving upper bounds for the variances, or a two-column
matrix giving lower and upper bounds. If this has (row) names, then
they should coerce to integers giving indices of the variance-benchmark
combinations starting from zero (that is, it is one less than the column
number of the combination in the input or default vtable). Without
names, the first column (or columns) are assumed.

bench.constraint

a named vector giving upper bounds for variances relative to the named
benchmarks, or a two-column matrix giving lower and upper bounds. The

trade.optimizer 29

names need to be asset names represented in the variance argument or
the bench.weight argument.

dist.center either a named numeric vector, or a list with one or more components
that are named numeric vectors. The names need to be asset ids like
those of prices.
If this is a numeric vector, then it is changed to be a length one list with
that vector as its component (hence making it length one for the purposes
of the descriptions of the other distance arguments). The components of
this list are the target portfolios from which distances are measured.

dist.style a character vector that is replicated to have length equal to the length of
dist.center (after possibly being coerced to a list). The elements must
be (abbreviations of) strings: "weight", "value", "shares", "sumsqwi",
"customweight", "customvalue", "customshares", "customsumsqwi".
The ”weight” style means that a vector of weights should be given in
dist.center that sum to one. The ”value”style means that the monetary
values of the portfolio should be given. The ”shares” style means that the
number of shares (or lots or whatever) should be given. These last two
mean that the distances are in terms of value rather than weight. The
”sumsqwi” style means that the distance is the weighted sum of squared
differences in weights where the weights are the inverse of the weight in
the target portfolio (assets not in the target are ignored).
The styles that start with ”custom”all use a price vector from dist.prices
rather than prices to calculate the distance.

dist.bounds a numeric vector, numeric one-column matrix, or numeric two-column
matrix. A numeric vector is coerced into a one-column matrix, and a
one-column matrix is coerced into a two-column matrix with the first
column consisting of all zeros. The number of rows in this matrix may
either be the number of components in the dist.center list, or that
number minus the number of distances that are used in the utility (see
dist.utility). The first column states the lower bound for the distance,
and the second column states the upper bound. The numbers in each row
need to correspond to the style for that distance.

dist.trade a logical vector that is replicated to be the length of dist.center. Values
that are TRUE indicate that the distance should be on the trade rather than
on the portfolio.

dist.utility a logical vector that is replicated to be the length of dist.center. Values
that are TRUE indicate that the distance is used in the utility rather than
constrained.

dist.prices either a named numeric vector or a list with components that are named
numeric vectors. If a list, it can either have length one, length equal to the
number of ”custom” styles, or length equal to the length of dist.center.
This gives the prices used to calculate the custom style distances.

sum.weight a numeric vector with names that correspond to integers, or a two-column
matrix with row names. This constrains the sum of the largest absolute
weights relative to the gross value. The name of an element (or row)
gives the number of the largest weights to be summed, and the value
gives the maximum (minimum and maximum in the case of a matrix)
for the sum of that number of weights. For example, to limit the sum
of the 5 largest weights to be no more than 40 percent, the appropriate
sum.weight argument would be: c("5"=.4) Note the quotes around the
5.

30 trade.optimizer

limit.cost either NULL or a length 2 numeric vector giving the lower and upper
bounds on the cost. This is useful for random portfolios, but is unlikely
to be of interest for optimization.

close.number if given, a numeric vector of length 1 or 2. This is the lower and upper
bounds for the number of positions to close in the existing portfolio. If of
length 1, then exactly that number of positions are to be closed.

utility character string; the possibilities are (the start of): "information ratio",
"mean-variance", "exocost information ratio", "minimum variance",
"maximum return", "mean-volatility", "distance". The information
ratio is the expected return of the portfolio divided by the square root of
the variance of the portfolio. The default is the information ratio if both
variance and expected.return are given and dist.utility is not TRUE.
Otherwise, it infers what the default must be. This argument is ignored
if utable is given.

risk.aversion number giving the risk aversion for the mean-variance or mean-volatility
utility. The utility is the risk aversion times the variance (or volatility)
of the portfolio minus the expected return of the portfolio. Many other
formulations use one-half the variance, so the risk aversion is different
by a factor of two. If you want infinite risk aversion, you should set the
objective to "minimum variance". This argument is ignored except in
the two cases where risk aversion appears in the utility.

benchmark vector of one or more character strings naming the benchmark(s). These
must appear in the variance but need not appear as names in prices
unless bench.trade is TRUE.

bench.trade logical value. If TRUE, then assets identified as benchmarks (in argument
benchmark and bench.constraint) can be traded (and hence need to
have a valid price). This is effectively set to FALSE if universe.trade is
given.

bench.weights a list where the name of each component is the name of a benchmark.
Each component should be a named numeric vector that sums to 1 (or
100). All of the names on the weights need to be in variance. Bench-
marks in this argument are added to variance if they are not included
in it. Otherwise the variance is checked to see if the values in the vari-
ance are implied by the weights; if not, then the variance values are re-
tained but a warning is issued unless do.warn item variance.benchmark
is FALSE. The same is true for expected.returns except the do.warn
item is alpha.benchmark.

long.buy.cost a vector or matrix of the cost to buy assets if they are long. The meaning
depends on whether or not cost.par has length.
If cost.par is NULL: If a vector (or single column matrix), the costs are
linear; that is, the cost in the objective for an asset is the number bought
times the corresponding element in buy.cost.
If this is a matrix with more than one column and cost.par has zero
length, then it represents a polynomial of order one less than the number
of columns. The first column is the intercept, the second column corre-
sponds to number of units traded (to the first power), the third column
corresponds to number of units squared, etc.
If cost.par has positive length: Then this must have as many columns
as the length of cost.par. Each column is the coeficient of units to the
power given by the corresponding element of cost.par.

trade.optimizer 31

If this has names (row names in the case of a matrix), then it may contain
information for assets that are not in the current problem. However, it
must have information on all of the tradable assets that are in the current
problem.

long.sell.cost

a vector or matrix of the cost to sell long assets. See long.buy.cost for a
full description. The default value of this is the value of long.buy.cost.

short.buy.cost

a vector or matrix of the cost to buy short assets. See long.buy.cost for
a full description. The default value of this is the value of long.buy.cost.

short.sell.cost

a vector or matrix of the cost to sell short assets. See long.buy.cost for a
full description. The default value of this is the value of long.buy.cost.

cost.par NULL or a vector or matrix of exponents to the number of units for trading
costs. If this is given, then all four of the arguments giving cost values
must have the same number of columns as the length of cost.par (if it
is a vector) or the number of columns of cost.par (if it is a matrix).
Not giving this argument is equivalent to giving a sequence of integers
(that starts at zero if there is more than one column in the costs).
If this is a matrix, then it should have row names that identify the assets.
This form allows each asset to have its own individual exponents in the
cost function.

ucost a number that scales the trading costs in the utility. For example, when
maximizing returns, what is really maximized is the portfolio return minus
ucost times the transaction costs.

scale.cost a character string indicating what scaling should be done on the costs.
This must partially match one of: "gross" (the most likely choice and
the default), "trade", "none".

start.sol there are three possibilities (apart from NULL): (1) an object resulting
from trade.optimizer; (2) a named numeric vector (such as the trade
component of the output of a previous optimization); (3) a list of such
vectors. The starting solutions, which need not have length equal to
ntrade, are used as suggestions for the optimizer.
If a single starting solution is given and funeval.max is set to 0 or 1,
then the result will be for the starting solution as the trade – no actual
optimization is performed.

allowance number less than one (but generally close to one) which provides the al-
lowable range of gross.value, net.value, long.value and short.value
if only a single number is given for the argument.

do.warn logical vector. The most likely use is to give a vector of all FALSE values
with names. The names need to partially match: "cost.intercept.nonzero",
"converged", "value.range", "extraneous.assets", "no.asset.names",
"benchmark.long.short", "variance.list", "turnover.max", "max.weight.restrictive",
"neg.dest.wt", "penalty.size", "noninteger.forced", "ignore.max.weight",
"bounds.missing", "positions.names", "start.noexist", "random.start",
"novariance.optim", "nonzero.penalty", "neg.risk.aversion", "zero.iterations",
"infinite.bounds", "notrade", "randport.failure", "utility.switch",
"thresh.notrade", "dist.prices", "dist.style", "dist.zero", zero.variance,
alpha.benchmark, variance.benchmark, var.eps, back.compat, index.zero,

32 trade.optimizer

riskfrac.part, exit.obj, superfluous.constraint. Warning mes-
sages will be suppressed when their type is set to FALSE. The default
values are all TRUE except for "converged". Some warnings are never
suppressed.

penalty.constraint

a numeric vector giving the multiplier for each penalty. This is replicated
to have length equal to the number of columns in constraint.matrix
plus the number of variance constraints, etc.

quantile a number between zero and one (inclusive) giving the quantile from the
utilities when there is more than one utility destination. In general, it only
makes sense to use numbers that are one-half or greater. When quantile
is one, then this is a min-max solution; that is, for each portfolio we
look at the worst (minimum) utility over the specified combinations of
expected returns, variances and benchmarks, then we select the portfolio
that maximizes the worst utility. With quantile set to one-half, we
are getting the median utility over the combinations of expected returns,
variances and benchmarks.

dest.wt numeric vector giving strictly positive weights to the destinations of the
combinations of expected returns and variances. When this is given, then
the quantile argument refers to a weighted quantile.

utable a numeric matrix which controls the combinations of expected returns,
variances and benchmarks, and their placement into the destinations.
Providing this is only necessary if there are multiple expected returns,
variances or benchmarks, and the default treatment of them is not what
is desired. The matrix has 6 rows: ”alpha.spot” is the (zero-based) in-
dex of the columns of atable; ”variance.spot” is the zero-based index of
columns of vtable; ”destination” is the zero-based index of the destina-
tion; ”opt.objective” is 0 for a mean-variance utility, 1 for an information
ratio utility, 2 for exocost information ratio, 3 for minimum variance, 4 for
maximum return, 5 for mean-volatility, 6 for distance; ”risk.aversion” is
the risk aversion; and ”wt.in.destination” is the weight of this combination
inside the destination for this combination.

atable numeric matrix with two rows describing the combinations of expected
returns and benchmarks. The first row is the zero-based index of the ex-
pected returns (that is, one less than the column index of expected.return).
The second row is the index within the assets of the benchmark (this
starts numbering from zero); a negative number indicates no benchmark.
However if given, then the second row is ignored and is created by the
benchmarks attribute that is required. This attribute needs to be a char-
acter vector as long as the number of columns in atable; the elements
are either asset names or the empty string (meaning no benchmark).

vtable numeric matrix with three rows describing the combinations of variances
and benchmarks. The first row is the zero-based index of the variance ma-
trix (that is, one less than the index of the third dimension of variance).
The second row is the index within the assets of the benchmark (this
starts numbering from zero); a negative number indicates no benchmark.
However if given, then the second row is ignored and is created by the
benchmarks attribute that is required. This attribute needs to be a char-
acter vector as long as the number of columns in vtable; the elements
are either asset names or the empty string (meaning no benchmark). The
third row is one or zero depending on if the variance-benchmark combi-
nation is used in the utility or not.

trade.optimizer 33

dumpfile a character string giving the name of a file to be produced for the purposes
of debugging in the event of certain errors being triggered due to a bug.
This is hopefully a superfluous argument. No file is created by default.

... individual arguments to trade.optimizer.control (or whatever other
function is given as control) may be given if control is not specifically
given as a list.

seed the seed for the random number generator that is internal to the opti-
mizer. The whole name (”seed”) must be used – no abbreviations al-
lowed. If this is given, it will most likely be NULL or a single integer to
create a random seed via seed.BurSt. Specifying this produces a ran-
dom result as opposed to the default behavior of using a particular seed
(.standard.seed.BurSt).

control a list like the output of trade.optimizer.control that sets numerous
controls for the optimizer. Alternatively, it can be a function that pro-
duces such a list. The whole name (”control”) must be used – no abbre-
viations allowed.

identity an arbitrary object, most likely a string or an integer. This is merely
added unchanged to the output. It is useful when an optimization is
repeatedly done in parallel. The whole name (”identity”) must be used –
no abbreviations allowed.

Value

an object of class portfolBurSt which is a list with the following components:

new.portfolio

named numeric vector giving the optimal portfolio. The numbers are the
number of units (shares, lots) of the assets.

trade named numeric vector giving the trade needed to achieve the optimal
portfolio. The numbers are the number of units (shares, lots) of the
assets.

results numeric vector containing various results from the optimization. It con-
tains the objective achieved, the negative utility, the trading cost, and
the penalty (for unmet constraints) component of the objective. The ob-
jective is the sum of the negative utility and the penalty. The cost is
included (possibly non-linearly) in the negative utility.

converged logical value(s): if a sufficiently large number of consecutive iterations
failed to improve the solution, then convergence is declared to have oc-
curred. If stringency is positive, then two values are returned: the first
element (called "total") is TRUE if the stringency requirement of finding
enough identical solutions is satisfied; the second element is the conver-
gence status of the final run performed.

objective.utility

character string stating the utility that is the objective of the optimization.
universe.size

a vector giving the number of assets in the universe, the number of assets
allowed to trade, the number that the universe.trade argument allows
to trade, and the number that the positions argument allows to trade.
This component is suppressed when the object is printed, but it is a part
of the output of the summary method for optimized portfolios.

34 trade.optimizer

utable the utility table that was input or created for the problem. This compo-
nent is suppressed when the object is printed.

atable the input or created atable. This component is suppressed when the
object is printed.

vtable the input or created vtable. This component is suppressed when the
object is printed.

alpha.values vector with length equal to the number of expected return-benchmark
combinations giving the (ex-ante) expected return(s) of the optimal port-
folio.
The values assume that the net asset value is the gross value. Scaling is
called for if that assumption is not correct.

var.values vector with length equal to the number of variance-benchmark combina-
tions giving the (ex-ante) variance(s) of the optimal portfolio.
The values assume that the net asset value is the gross value. Scaling is
called for if that assumption is not correct.

utility.values

vector of the negative utilities (including costs and penalties) of the opti-
mal portfolio. If there are multiple values, these are sorted – they are not
in the same order as the columns of utable or destinations.

constraint.violations

numeric vector of the violations of each constraint type. Zero means the
constraint is satisfied. This component is suppressed when the object is
printed.

penalty.constraint

numeric vector of the penalties for each constraint type. This component
is suppressed when the object is printed.

value.limits two-column matrix giving the lower and upper bounds of the gross value,
net value, long value and short value. This component is suppressed when
the object is printed, but is shown in the summary.

prices the vector of prices of relevant assets used in the optimization. That is,
prices relevant to the solution found. This component is suppressed when
the object is printed.

optim.mumbo.jumbo

numeric vector of results of the optimization. The first four values pertain
to the final run (which is the only run unless stringency is positive).
These give: number of iterations performed, the number of iterations
to have improved the solution, the final number of consecutive iteration
failures, and the maximum number of consecutive iteration failures.
The next group refers to the entire optimization. These give: the number
of portfolios evaluated, the total number of requested evaluations, the
number of evaluations requested that were amusingly silly, and a flag
denoting the state of the result.
Finally there are values that are relevant when stringency is positive:
the number of runs, the total number of iterations, the total number of
successes and the number of assets that were in the trades of the runs in
the initial phase.
This component is suppressed when the object is printed, but is shown in
the summary.

trade.optimizer 35

risk.fraction

if argument risk.fraction is given or there are variance fraction style
linear constraints, then this component will be a matrix containing the
fractions of variance for the assets. This component is suppressed when
the object is printed.

existing the existing portfolio before the optimization.

violated character vector giving the types (if any) of constraints that are broken
by the solution.

seed the random seed for the internal random number generator of the opti-
mizer. This component is suppressed when the object is printed.

version character vector giving the version numbers for the C code and the S
language code. This component is suppressed when the object is printed.

sizes numeric vector describing aspects of the problem – generally uninterest-
ing. This component is suppressed when the object is printed.

dist.table a data frame giving information on each distance. The columns are: style
(character); trade logical stating if the distance is for the trade or port-
folio; utility logical stating if the distance is a utility or a constraint;
and then the three numeric columns lower.bnd, upper.bnd, value.

dist.center a list giving the target portfolio(s). This component is suppressed when
the object is printed.

dist.prices either NULL or a list giving the custom distance prices. This component
is suppressed when the object is printed.

benchmarks vector giving any benchmarks used. The names of the vector are the
names of the benchmarks. The values in the vector are the zero-based
indices of the benchmarks as used in atable and vtable. This component
is not present if there are no benchmarks. This component is suppressed
when the object is printed.

forced.explicit

vector giving the trades explicitly forced using the forced.trade argu-
ment. This component is not present if no trades were explicitly forced.

positions.forced

vector giving the trades that were forced via the positions argument.
This component is not present if there were no such trades.

all.forced vector giving the trades that were forced – including trades implicitly
forced in order to try to satisfy maximum weight constraints, and trades
forced via the positions argument. This component is not present if no
trades were forced.

positions the input positions if given. This component is suppressed when the
object is printed.

tol.positions

the input tol.positions if positions is given. This component is sup-
pressed when the object is printed.

lin.table a data frame showing information on the set of linear constraints, one row
for each (top-level) constraint. The columns are:
style: states the style of the constraint ("varfraction", "count", "weight",
etc.).
trade: logical stating whether the constraint is for the trade or the port-
folio.

36 trade.optimizer

absolute: logical stating whether the constraint is for the gross or net.
levels: the number of levels for the constraint; this is zero for numeric
constraints.
direction: 0 for all assets, 1 for long-only constraints, -1 for short-only
constraints.
rfloc: the zero-based column of vtable to which a variance fraction style
constraint refers; this is -1 for other constraint styles.
riskfrac.col: the column of the risk.fraction matrix (in the output)
that a variance fraction style constraint uses; this is 0 for other constraint
styles.
This component is not present unless lin.constraints was given. This
component is suppressed when the object is printed, but is shown in the
summary.

con.realized a list with 0 or 1 components. The possible component is:
linear: matrix giving bounds, values and violations of the linear con-
straints.
This component is suppressed when the object is printed, but is shown in
the summary.

iterhistory a vector giving the objective value at each iteration of the optimization
process. The length of this is two more than the number of iterations done:
the first value gives the objective after the pre-iteration phase, and the
last value gives the objective after the post-iteration phase. This is only
present if the save.iterhistory control parameter is TRUE. In general,
this is only of interest when investigating the quality of optimizations.

identity the input value of identity. This component is suppressed when the
object is printed.

checkinput a list containing components: prices, variance, expected.return and
existing with a few values each of those inputs. This is used in particular
with random portfolios and updating to try to make sure that no sleight
of hand is taking place with data. This component is suppressed when
the object is printed.

timestamp two character strings giving the time and date of creation (the time the
command started and the time it ended).

call an image of the call that created the object.

Side Effects

The S language random seed is changed or created if the seed argument is such that it
generates a new seed. That is not the default.

Details

SPECIFYING THE MONETARY VALUE. While prices is always required, there is no
other single argument that is always required. However, there is the requirement that
the value of the portfolio be specified somehow. For any problem, specifying turnover is
enough. For long-only problems, any one of gross.value, long.value or net.value being
specified works. For long-short portfolios, then either gross.value and net.value need
to be specified, or long.value and short.value (assuming that turnover has not been
given). If any of the gross, net, long or short values are given, then at least one pair – either
gross and net, or long and short – need to be given.

trade.optimizer 37

BOUNDING THE TRADE. The lower.trade and upper.trade arguments bound the
number of units that may be traded for each asset. The optimizer insists that the range
of allowable units includes zero. But you can use the forced.trade argument to specify
trades that must be performed. You can also give the positions argument which is in
monetary value rather than shares (or lots). positions can give limits on the value in the
portfolio and the value to trade including forced trades; it can also specify assets not to
trade (by placing NA in at least one of the first four columns of that row).

THE PENALTY. The objective not only includes the negative utility (including the cost
of the trade) but also a penalty for breaking constraints. If the penalty is non-zero, then
the optimization should generally be redone, or the constraints changed – the portfolio may
not be very optimal when penalties are imposed. There are times when trivial penalties
are imposed by constraints that are at the boundary – the optimality will not be affected
in such cases.

SPEED AND OPTIMIZATION QUALITY. There is a trade-off between the time the op-
timizer takes and the quality of the optimization that you are likely to get. The con-
trol arguments iterations.max and fail.iter can be increased to improve the solution,
or decreased to speed the optimization. The quality can also be improved by increasing
stringency from zero. The User’s Manual has more on this.

Bugs

If the existing portfolio breaks maximum weight constraints (from the max.weight argu-
ment), there are situations in which the optimal portfolio will not satisfy those constraints
– see the User’s Manual for more information.

For long-only portfolios if more than one of gross.value, net.value, long.value is given,
then the range of all these values is used as the allowable interval. More logical (but much
more bother) would be the intersection of the intervals. Best is to just give one of these.

The trace argument has no effect under Windows in some cases – tracing information on
this platform is given in batch mode.

Revision

This help was last revised 2012 April 17.

See Also

trade.optimizer.control, build.constraints, random.portfolio, summary.portfolBurSt,
deport.portfolBurSt, seed.BurSt, constraints.realized, Cfrag.list.

Examples

build long-only portfolio worth 1 million containing no more than 60 assets

op1 <- trade.optimizer(eq.prices, varian, long.only=TRUE,

gross.value=1e6, ntrade=60)

summary(op1)

deport(op1) # csv file of the trade

revise a long-short portfolio, keep the number of assets no more than 50

op2 <- trade.optimizer(eq.prices, varian, gross.value=1e6,

net.value=c(-1e3, 5e3), exist=cur.port, port.size=50)

38 trade.optimizer.control

trade.optimizer.pre Select an Optimal Trade for a Portfolio

Description

Function that is a utility for trade.optimizer and random.portfolio. This is not meant
for direct use.

Usage

trade.optimizer.pre(...)

Arguments

... See the description of arguments in trade.optimizer.

Value

a list containing objects to be used in computing the problem.

Side Effects

none.

Revision

This help was last revised 2012 April 17.

See Also

trade.optimizer, trade.optimizer.control, random.portfolio.

trade.optimizer.control

Optimizer Controls for Trade Selection

Description

Sets parameters that control the optimization algorithm in trade.optimizer (and hence
in random.portfolio.utility).

Usage

trade.optimizer.control(iterations.max = 20, fail.iter = 0,
funeval.max = .Machine$integer.max, trace = TRUE,
exit.obj = -big, runs.init = 3, runs.final = 2,
runs.min = 1, stringency = 0, nonconverge.mult = 2,
feasible = 0, miniter = 0, force.risk.aver = FALSE,
enforce.max.weight = TRUE, save.iterhistory = FALSE,
safe.mode = TRUE, ...)

trade.optimizer.control 39

Arguments

iterations.max

integer giving the maximum number of iterations to perform in a run.

fail.iter integer giving the maximum number of consecutive iterations that fail to
improve the solution without the algorithm stopping and declaring that
convergence has been achieved. For example, if fail.iter is 5, then the
algorithm continues with 5 consecutive failures but stops upon the 6th
consecutive failure.

funeval.max integer giving the maximum number of function (portfolio) evaluations to
perform. The most common use of this is to set it to one or zero when
you have a specific trade that you would like to have done.

trace logical value. If TRUE, then information on the progress of the optimization
is printed. This is ignored under Windows – tracing information is not
available on this platform except in BATCH mode.

exit.obj number such that the optimization terminates if the best solution has
an objective at least as good (i.e., an objective smaller than or equal to
exit.obj). (Useful for comparing algorithms, but otherwise probably
uninteresting.)

runs.init if stringency is greater than zero, then the maximum number of runs to
do on the original problem.

runs.final if stringency is greater than zero, then the maximum number of runs to
do with the trading universe restricted to those assets that traded in at
least one of the initial runs.

runs.min if stringency is greater than zero, then the minimum number of runs
that are to be performed.

stringency an integer giving one less than the number of runs that need to match as
the best solution before the optimization is exited. If stringency is 0,
then only one run is done. If stringency is 1, then the best solution needs
to occur twice before the optimization stops. If the best solution does not
occur enough times before the maximum number of runs is exhausted,
then a final non-convergence run is performed that starts from the best
solution found.

nonconverge.mult

if stringency is greater than zero and the stringency requirement is not
met, then a final run is performed starting with the best solution found.
nonconverge.mult gives the ratio of iterations allowed for this final run
relative to the iterations allowed in the others. So if iterations.max is
5 and nonconverge.mult is 3, then the non-convergence run is allowed
up to 15 iterations.

feasible if all constraints are not met at the end of the iteration equal to the value
of feasible, then the optimization is aborted. But if feasible is 0, then
the optimization does not stop on account of broken constraints.

miniter the minimum number of iterations to be performed in a run even if
fail.iter says to stop already.

force.risk.aver

logical value which is only used when the utable argument is explicitly
given and optimization with risk aversion is performed. If TRUE, then the
risk.aversion argument overrides the risk aversion values in the utility
table.

40 update.randportBurSt

enforce.max.weight

logical value; if TRUE, then forced trades are automatically created if any
positions in the existing portfolio break their maximum weight constraint.
This doesn’t absolutely guarantee that the constraints will be met, but
they generally will be unless the gross value is given a lot of latitude.

save.iterhistory

logical value; if TRUE, then a vector of the objective value at each iteration
of the optimization will be returned.

safe.mode logical value; if FALSE (not recommended), then some errors may be by-
passed. The reason for this option is to allow possible workarounds for
bugs if they appear.

... there are additional arguments that make this function compatible with
random.portfolio.control (because the two tasks use the same code
internally).

Value

a list with the following components:

icontrol vector of the integer-valued control parameters.

dcontrol vector of the double precision control parameters.

aux vector of the auxiliary control parameters.

Revision

This help was last revised 2012 April 17.

See Also

trade.optimizer, random.portfolio.utility, random.portfolio.control.

Examples

my.to.control <- trade.optimizer.control(iterations=100, fail=5,

stringency=1, runs.init=5, runs.final=3)

trade.optimizer(eq.prices, varian, control=my.to.control)

update.randportBurSt Re-execute a random portfolio object

Description

Re-executes a call to random.portfolio, possibly with some arguments changed.

Usage

update.randportBurSt(object, ..., evaluate = TRUE,
checkinput = TRUE, envir = parent.frame())

update.randportBurSt 41

Arguments

object object produced by random.portfolio (or random.portfolio.utility).

... arguments to random.portfolio that should be added or changed from
those in the initial call.

evaluate logical value. If TRUE (the default), then the command is executed. If
FALSE, then the (revised) call is returned.
This argument needs to be given by its full name since it comes after the
three-dots in the argument list.

checkinput logical value. If TRUE (the default), then a check is made to see if the
prices, variance, expected return and the existing portfolio are the same
in the new call as the original call. Except that any of these are excluded
from the test if they are arguments in the call to update.
This argument needs to be given by its full name since it comes after the
three-dots in the argument list.

envir the environment in which the evaluation is to take place.

Value

If evaluate is TRUE, then the possibly revised call is executed, producing a random portfolio
object (of class "randportBurSt").

Details

Arguments that are changed need to use the exact same abbreviation (if any) as the original
call. For instance, if in the original call net.value is abbreviated to net.val, then you
need to use net.val if you want to change the net value allowed.

The default method of update works for the results of trade.optimizer so it doesn’t need
a special method. However, this means that there is no check for the key inputs changing.
If you want such a check, then you need to do it yourself as can be seen in the help file for
pprobe.checkinput.

Revision

This help was last revised 2012 April 17.

See Also

random.portfolio, trade.optimizer, pprobe.checkinput.

Examples

randport1 <- random.portfolio(100, prices, variance=varian,

long.only=TRUE, bench.constr=c(spx=.04^2/252),

lin.constraints=cntrysect.conmat,

lin.bounds=cntrysect.bounds, gross.value=1e6)

randport2 <- update(randport1) # same again

randport3 <- update(randport1, gross.value=1.5e6)

opt1 <- trade.optimizer(prices, variance=varian,

long.only=TRUE, bench.constr=c(spx=.04^2/252),

lin.constraints=cntrysect.conmat,

lin.bounds=cntrysect.bounds, gross.value=1e6)

42 valuation.portfolBurSt

opt2 <- update(opt1, gross.value=1.5e6)

call1 <- update(opt1, number.rand=100, evaluate=FALSE)

call1[[1]] <- as.name("random.portfolio")

randport4 <- eval(call1) # random portfolios like opt1

valuation.portfolBurSt

Find the Monetary Values of a Portfolio or Trade

Description

Returns various concepts of value.

Usage

S3 method for class 'portfolBurSt':
valuation(x, prices = x$prices, trade = FALSE,

weight = is.logical(collapse) && !collapse,
collapse = is.array(prices), type = "gross", cash = NULL,
all.assets = FALSE, returns = NULL, drop.factor = FALSE)

Default S3 method:
valuation(x, prices,

weight = is.logical(collapse) && !collapse,
collapse = is.array(prices), type = "gross", cash = NULL,
all.assets = FALSE, returns = NULL, drop.factor = FALSE)

Arguments

x required. An object of class "portfolBurSt" created by trade.optimizer
(for the "portfolBurSt" method). Or a named vector (for the default
method).

prices a named vector of asset prices that includes at least the assets in the object
being evaluated; or a matrix with column names for the assets (rows are
for times); or a three-dimensional array with rows corresponding to times,
columns to assets, and slices to different scenarios.
This is a required argument for the default method.

trade logical value. If TRUE, then the results are for the trade. If FALSE, then
the results are for the optimal portfolio.

weight logical value; if TRUE and collapse is FALSE, then the result includes a
component named weight which contains the weights of the assets (that
is, position values divided by the gross value).
If weight is TRUE and collapse represents categories, then the results
are weights within the categories (or category combinations).

collapse logical value, or an object representing categories. If TRUE, then the result
will be a number (or a vector if prices was a three-dimensional array)
containing results for the portfolio rather than individual assets.
Categories can be represented by a named character vector or factor, or a
list of these (for combinations of categories). The list can be in the form
of a data frame where the row names are the asset identifiers.

valuation.portfolBurSt 43

type this is only used when collapse is not FALSE.
A character string that (partially) matches one of: "gross", "net", "long",
"short", "nav", "cash". When this has value "nav", then the result is
the net value plus cash. When this has value "short", the result is non-
negative numbers. The "cash" type lets you see the value of cash that is
computed.

cash this is only used when type="nav" and collapse is TRUE.
A single number, a numeric vector with as many elements as there are
rows in prices, or NULL. If this is NULL, then the amount of cash is such
that the initial value of the portfolio is equal to the gross value minus the
net value at the first time point.

all.assets a logical value. if TRUE, then the weight and individual components
will have the same assets (in the same order) as prices.

returns either NULL or a single character string that is (an abbreviation of) "log",
"simple", "geometric", or "arithmetic". This fails if prices is not a
matrix or array. This is two types of returns with two names each.

drop.factor a logical value. if TRUE, then (combinations of) categories in collapse
that do not occur are not represented in the result.

Value

if collapse is TRUE, then an object with dimension one less than prices. The order of the
dimensions is: time (if any), and scenarios (if any).

If collapse represents categories, then an object with the same number of dimensions as
prices (and currently prices is not allowed to be three-dimensional in this case). The
order of dimensions is: time (if any) and categories.

The above include the attributes timestamp and call like the descriptions given below.

If collapse is FALSE, a list with the following components:

individual the amount of money in individual assets.

total length 4 vector containing the gross value, the net value, the long value
and the short value.

weight only present if the weight argument was TRUE. A numeric vector contain-
ing the weights of the assets.

timestamp character string giving the time and date of the evaluation.

call the call that created the object.

Details

These are methods for the generic function valuation.

Revision

This help was last revised 2012 February 24.

See Also

trade.optimizer, summary.portfolBurSt, valuation.randportBurSt.

44 valuation.randportBurSt

Examples

op1 <- trade.optimizer(eq.prices, varian, long.only=TRUE,

gross.value=1e6)

valuation(op1)

valuation(op1, new.prices) # valuation with new prices

valuation(op1, rbind(eq.prices, new.prices)) # two gross values

valuation(op1, trade=TRUE) # valuation for the trade

valuation(op1$trade, eq.prices) # same thing

get weight vector corresponding to full universe of assets

valuation(op1, pricevec, all.assets=TRUE)$weight

log returns over some time period

valuation(op1, price.matrix, returns="log")

valuation.randportBurSt

Monetary Value of Random Portfolios

Description

Returns one of various concepts of value for the portfolios.

Usage

S3 method for class 'randportBurSt':
valuation(x, prices, weight = FALSE,

collapse = is.array(prices), type = "gross", cash = NULL,
all.assets = FALSE, returns = NULL)

Arguments

x required. An object of class "randportBurSt" (generally the result of a
call to random.portfolio).

prices required. A named vector of asset prices that includes at least the assets in
the object being evaluated; or a matrix with column names for the assets
(rows are for times); or a three-dimensional array with rows corresponding
to times, columns to assets, and slices to different scenarios.

weight logical value; if TRUE, then the result will contain weights rather than
monetary value.

collapse logical value, or an object representing categories. If TRUE, then the result
will be a vector or matrix containing results for the portfolios rather than
individual assets.
Categories can be represented by a named character vector or factor, or a
list of these (for combinations of categories). The list can be in the form
of a data frame where the row names are the asset identifiers.

valuation.randportBurSt 45

type this is only used when collapse is not FALSE.
A character string that (partially) matches one of: "gross", "net", "long",
"short", "nav", "cash". When this has value "nav", then the result is
the net value plus cash. When this has value "short", the result is non-
negative numbers. The "cash" type lets you see the value of cash that is
computed.

cash this is only used when type="nav" and collapse is not FALSE.
A single number, a numeric vector with as many elements as there are
rows in prices, or NULL. If this is NULL, then the amount of cash is such
that the initial value is equal to the gross value minus the net value at
the first time point for each portfolio.

all.assets a logical value. if TRUE, then the weight and individual components
will have the same assets (in the same order) as prices.

returns either NULL or a single character string that is (an abbreviation of) "log",
"simple", "geometric", or "arithmetic". This fails if prices is not a
matrix or array. This is two types of returns with two names each.

Value

a list, vector, matrix or three-dimensional array containing valuation information, and with
some attributes.

If collapse is FALSE, then the result is a list of the same length as the input x where each
component holds the asset valuations or weights.

If collapse is TRUE, then the result is an object with the same number of dimensions as
prices, but the dimension in prices that corresponds to assets corresponds to random
portfolios in the result.

if collapse represents categories, then the result has one more dimension than prices
(and currently prices is not allowed to be three-dimensional in this case). The order of
dimensions is: time (if any), categories, random portfolios.

The (extra) attributes are:

timestamp character string giving the date and time of the evaluation.

call the call that created the object.

Details

This is a method for the generic function valuation for class randportBurSt.

If the portfolios are long-short and the valuations are going to be used to calculate returns,
then you should set type="nav" and set cash properly for the situation that you have.

If out.trade is TRUE in the call for x, then the results are for the trades and not for the
portfolios.

Revision

This help was last revised 2012 February 24.

See Also

random.portfolio, deport.randportBurSt, valuation.portfolBurSt.

46 valuation.randportBurSt

Examples

randport1 <- random.portfolio(100, prices, varian, long.only=TRUE,

bench.constr=c(spx=.04^2/252), lin.constraints=cntrysect.conmat,

lin.bounds=cntrysect.bounds, gross.value=1e6)

randval1 <- valuation(randport1, prices)

randval1n <- valuation(randport1, new.prices)

randret <- valuation(randport1, price.matrix, returns="simple")

weights by country-sector combination

randwgt.cntrysect <- valuation(randport1, price.matrix,

collapse=list(country, sector), weight=TRUE)

Index

build.constraints, 1, 5, 35

Cfrag.list, 2, 35
constraints.realized, 2, 3, 19, 35

deport (deport.portfolBurSt), 5
deport.portfolBurSt, 5, 35
deport.randportBurSt, 7, 14, 43

head.randportBurSt, 8, 14, 20

pprobe.checkinput, 9, 39
pprobe.verify, 10
print.portfolBurSt

(summary.portfolBurSt), 17
print.randportBurSt

(summary.randportBurSt), 19

random.portfolio, 8, 9, 12, 14, 16, 20,
35, 36, 39, 43

random.portfolio.control, 11, 38
random.portfolio.utility, 12, 12, 16,

20, 38
randport.eval, 14, 15

seed.BurSt, 17, 35
summary.portfolBurSt, 5, 17, 35, 41
summary.randportBurSt, 9, 14, 19

tail.randportBurSt
(head.randportBurSt), 8

trade.distance, 21
trade.optimizer, 2, 5, 6, 13, 14, 16, 19,

21, 22, 36, 38, 39, 41
trade.optimizer.control, 12, 35, 36, 36
trade.optimizer.pre, 36

update.randportBurSt, 14, 38

valuation (valuation.portfolBurSt),
40

valuation.portfolBurSt, 19, 40, 43
valuation.randportBurSt, 14, 20, 41, 42

47

