

2

Copyright 2003-2012 Burns Statistics Limited. All rights reserved.
http://www.burns-stat.com/
Edition 5: 2012 April 17

S-PLUS and S+ are registered trademarks of TIBCO.

http://www.burns-stat.com/

Contents

1 Orientation 13
1.1 Why Portfolio Probe? . 13
1.2 Overview of Functionality . 14
1.3 Necessary Tools . 14
1.4 Installing the Software . 15
1.5 Loading the Software . 15
1.6 Road Map . 15
1.7 Typography Conventions . 18

2 Generating Random Portfolios 19
2.1 The Command . 19
2.2 Working with Random Portfolios 21

Valuation . 21
Small Selections . 21
Evaluating Portfolios . 22
Summary . 23

2.3 Exporting Random Portfolios . 23
Writing monetary value . 24

2.4 Create a Matrix of Positions or Values 24
2.5 Combining Random Portfolio Objects 24
2.6 Unsatisfiable and Difficult Constraints 25
2.7 Adding a Utility Constraint . 26
2.8 Going Farther . 26

3 Constraints 27
3.1 Summary of All Constraints . 27

Round Lots . 27
3.2 Monetary Value of the Portfolio 27

Long-only Portfolios . 29
Long-short Portfolios . 29

3.3 Limits on Assets . 31
max.weight . 31
universe.trade . 32
lower.trade and upper.trade . 32
risk.fraction . 33

3.4 Number of Assets . 36
Number of Assets to Trade . 36
Number of Assets in the Portfolio 36

3

4 CONTENTS

3.5 Threshold Constraints . 37
Trade Thresholds . 37
Portfolio Thresholds . 37
Summary of Threshold Inputs . 38

3.6 Forced Trades . 38
3.7 Positions . 38

Portfolio constraints . 39
Trade constraints . 40
Forced constraints . 40
Universe constraints . 41
Threshold constraints . 41
Tolerance . 41
Summary of positions inputs . 42

3.8 Linear Constraints . 42
Building Constraints . 42
Bounds and lin.style . 43
Linear Constraints on Variance Partitions 46
Numerical Constraints: Risk Factors 46
Numerical Constraints: Market Capitalization 47
Mixing Numerical and Categorical Constraints 48
Portfolio Constraints versus Trade Constraints 48
Net Constraints versus Gross Constraints 49
Long-side Constraints and Short-side Constraints 49
Looking at the Effect of the Constraints 50
Evaluating Un-imposed Constraints 51
Inspecting Linear Constraints . 51

3.9 Count Constraints . 52
3.10 Alpha (Expected Return) Constraints 55
3.11 Variance Constraints . 55
3.12 Tracking Error (Benchmark) Constraints 56

Single Upper Bound . 56
Scaling . 56
Lower and Upper Bounds . 56
Multiple Benchmarks . 57
Advanced Use . 57

3.13 Distance . 57
Alternative prices . 58
Multiple distances . 58

3.14 Sums of Largest Weights . 59
3.15 Cost Constraints . 60
3.16 Number of Positions to Close . 60
3.17 Quadratic Constraints . 61

Add Constraints to the Variance 61
Impose Constraint Bounds . 62
Dummy Run . 62
Check for Benchmark . 62
Constraints out of Utility . 63
Actual Computation . 63

3.18 Constraint Penalties and Soft Constraints 64

CONTENTS 5

4 Valuation of Portfolios 65

4.1 Single Portfolio . 65

Summary Statistics . 66

Weights . 66

Collapsing Values . 67

4.2 Random Portfolios . 67

4.3 Compute Returns . 68

4.4 Collapse into Categories . 68

4.5 Summary . 69

5 Optimizing Long-Only Portfolios 71

5.1 Required Inputs . 71

Monetary Value . 71

Utility . 71

5.2 Examples for Passive Portfolios 72

Minimize the Variance of the Portfolio 72

Minimize Tracking Error . 72

5.3 Examples for Active Portfolios 74

Maximize the Information Ratio 74

The Information Ratio with a Tracking Error Constraint 74

Maximize Benchmark-relative Information Ratio 76

Mean-Variance Optimization . 76

Mean-Volatility Optimization . 76

Buy-Hold-Sell List . 77

5.4 Utility-free Optimization . 77

5.5 Managing Cash Flow . 78

Injecting Money into a Portfolio 78

Extracting Money out of a Portfolio 79

5.6 Asset Allocation . 79

5.7 Going Farther . 80

6 Optimizing Long-Short Portfolios 81

6.1 Required Inputs . 81

Monetary Value . 81

Utility . 81

6.2 Examples . 82

Maximize the Information Ratio 82

Maximize Return with a Bound on the Variance 83

Minimize Variance Given a Long List and a Short List 83

Mean-Variance Optimization . 84

6.3 Managing Cash Flow . 85

Injecting Money into a Portfolio 85

Extracting Money out of a Portfolio 85

6.4 Money Constraints . 86

6.5 Real-Time Monitoring . 86

6.6 Going Farther . 88

6 CONTENTS

7 General Use 89

7.1 Setting Up Data . 89

Prices and Other Imports . 89

Variance Matrix . 90

Adding a Benchmark to the Variance 92

7.2 The Random Generation or Optimization 92

7.3 Post-Optimization . 93

Explore the Trade . 93

Export the Trade . 94

7.4 Going Farther . 94

8 Trading Costs 95

8.1 Background . 95

8.2 Specifying Costs . 96

Linear Costs . 96

Nonlinear Costs . 97

8.3 Power Laws . 98

8.4 On Scaling Costs Relative to Utility 98

8.5 Costs Due to Taxes . 99

8.6 Going Farther . 100

9 Practicalities and Troubleshooting 101

9.1 Easy Ways to Be Wrong . 101

Data Mangling . 101

Input Mangling . 103

9.2 Suppressing Warning Messages 104

9.3 Cheatsheets . 107

Implied Ranges . 107

Threshold Inputs . 107

Positions Inputs . 108

9.4 Troubleshooting . 109

Utility Problems . 109

Portfolio Problems . 109

9.5 S Language Problems and Solutions 110

Creating Matrices . 110

Debugging . 110

10 Special Instructions 113

10.1 Special Instruction 1: Long-only when shorts exist 113

10.2 Special Instruction 2: Benchmark in long-short optimization . . . 113

11 Adjusting Optimization Speed and Quality 115

11.1 Staying at a Given Solution . 115

11.2 Reducing Time Use . 116

11.3 The Optimization Process . 117

11.4 Improving Quality . 118

11.5 Testing Optimization Quality . 118

CONTENTS 7

12 Utility 121
12.1 Maximum Information Ratio . 121

Example . 122
12.2 Mean-Variance Utility . 123
12.3 Mean-Volatility Utility . 123
12.4 Minimum Variance . 123
12.5 Maximum Expected Return . 124
12.6 Minimum Distance . 124
12.7 Going Farther . 124

13 Advanced Features 125
13.1 Multiplicity . 125
13.2 Alpha and Variance Tables . 126
13.3 Variance Constraints . 127
13.4 Expected Return Constraints . 129
13.5 Multiple Utilities . 130
13.6 Utility Tables . 131
13.7 Multiplicity Examples . 132

Dual Benchmarks . 132
Benchmark-relative Utility and Absolute Variance Constraint . . 134
Rival Variance Forecasts . 135
Multiple Time Periods . 136
Credit Risk . 136
Multiple Scenarios . 138

13.8 Compact Variance Objects . 142
The Variance List . 143

14 Dregs 145
14.1 Portfolio Probe Constituents . 145
14.2 The Objectives . 145
14.3 Writing C or C++ Code . 145
14.4 Bug Reporting . 146

8 CONTENTS

List of Tables

3.1 Summary of constraints. 28
3.2 Choices for the rf.style argument. 35
3.3 Choices for the lin.style argument. 44

4.1 Summary of possibilities with valuation. 70
4.2 Explanation of the “results” column in Table 4.1. 70

9.1 Implied ranges of arguments. 108
9.2 The meaning of threshold inputs. 108
9.3 The column order for the positions argument. 108

13.1 Arguments for multiple variances and expected returns. 126
13.2 Utilities codes for the utility table. 132

9

10 LIST OF TABLES

List of Figures

1.1 Some suggested routes through the document. 16
1.2 Possible route for utility-free optimization. 17

6.1 Constraints on gross, net, long and short values. 87

11

12 LIST OF FIGURES

Chapter 1

Orientation

This chapter has diverse aims:

• It suggests some reasons to choose Portfolio Probe.

• It provides a brief overview of Portfolio Probe functionality.

• It explains what software you need in order to run Portfolio Probe.

• It suggests a route through the rest of this document, given a task and a
state of mind.

• It presents the typographic conventions of the document.

1.1 Why Portfolio Probe?

The ability to generate random portfolios efficiently is the biggest benefit of
Portfolio Probe. Random portfolios are very powerful, and should be in your
toolbox if you deal with portfolios.

There are some reasons you might choose Portfolio Probe over other software
for optimization. These include:

• inputs and outputs of actual positions, not weights

• designed for long-short portfolios as well as long-only

• maximize information ratio directly

• can include riskless cash as an asset

• a wide range of utilities, including minimizing the distance to an ideal
target portfolio

• integer constraints such as the number of names to trade, the number of
names to hold, round lotting

• constraints on the risk contributed by each asset

• many other constraints

13

14 CHAPTER 1. ORIENTATION

• flexible forms for transaction costs

Portfolio Probe is implemented in the S language, an environment specially
designed for the type of operations that are needed when analyzing or optimizing
portfolios.

1.2 Overview of Functionality

The two primary aims of Portfolio Probe are:

• To generate random portfolios (the random.portfolio function).

• To optimize a portfolio (the trade.optimizer function).

The two functions have the same inputs (except for saying how many random
portfolios you would like, and whether you want random portfolios or random
trades).

All of the rest of Portfolio Probe is support for these two tasks. The other
major function is valuation that provides portfolio valuations or returns.

1.3 Necessary Tools

You need to choose a language in which to run Portfolio Probe. It can be one
of three:

• R, which can be downloaded for free via:

http://www.r-project.org/

There are some commercial distributions of R as well.

• S-PLUS (now S+), sold by TIBCO:

http://spotfire.tibco.com/

• C++. You can call Portfolio Probe functionality in a program that you
write.

S-PLUS and R are versions of the S language, and Portfolio Probe has been
written to work with either version of S. This document assumes you are using
S (as opposed to using C code). Portfolio Probe uses only very general features
of S so it should run the same in any version of R or S-PLUS.

When this document says “S”, it means either R or S-PLUS—the term “S”
should not be construed to mean only S-PLUS. Some of the examples explicitly
assume R is being used—the same effect would be done slightly differently in
S-PLUS.

Programming experience is not mandatory—whatever your objective, there
is likely to be an example provided in this manual or on the website that is close
to your case.

The present document assumes knowledge of S to the level of “Some Hints
for the R Beginner”—a brief, structured introduction which can be found in the

http://www.r-project.org/
http://spotfire.tibco.com/

1.4. INSTALLING THE SOFTWARE 15

Tutorials section of http://www.burns-stat.com/. Commands beyond that level
are included and explained.

The best way of using C++ is probably via the wonderful RInside package.
See the cookbook section on the Portfolio Probe website for more details.

There is the possibility of directly calling the C code in Portfolio Probe.
This approach is not recommended—it requires considerable effort, and likely
has little or no benefit.

While it is reasonably easy to start using Portfolio Probe, there is a lot of
room to grow. Portfolio Probe’s flexibility and the power of S can carry you a
long way.

1.4 Installing the Software

If you are using R and your machine has access to the internet, then you can
install Portfolio Probe with:

> install.packages("PortfolioProbe",

+ repos="http://www.portfolioprobe.com/R")

See the Frequently Asked Questions in the “User area” of www.portfolioprobe.com
if a firewall blocks this command or if you are using S-PLUS.

1.5 Loading the Software

If Portfolio Probe was installed in the default place, then Portfolio Probe is
loaded into an R session with:

> library(PortfolioProbe)

It is possible that the lib.loc argument to library may be required. In S-
PLUS it will depend on the particular installation, but something similar is
likely.

1.6 Road Map

There is one of two frames of mind that you are likely to have:

• Conceptual: primarily wanting to understand the task

• Operational: primarily wanting to do the task

With the choice of two tasks, that produces four possible routes through the
document. Figure1.1 is a graphical view of the suggestions.

Note that not all chapters appear in the maps. A lot of the document can be
reserved for reference as the need arises. In particular if you are only generating
random portfolios, you can safely ignore several of the chapters.

If you are only interested in utility-free optimization, then Figure 1.2 shows
a possible route through this document. This supposes that you will impose a
turnover constraint rather than providing trading costs for the assets.

http://www.burns-stat.com/

16 CHAPTER 1. ORIENTATION

Figure 1.1: Some suggested routes through the document.

Conceptual

G
en

er
at

e
R

an
do

m

Chapter 2: Generate Random

Chapter 3: Constraints

Chapter 7: General Use

Chapter 4: Valuation

Chapter 9: Practicalities

Operational

Chapter 7: General Use

Chapter 2: Generate Random

Chapter 3: Constraints

Chapter 4: Valuation

Chapter 9: Practicalities

O
pt

im
iz

e

Chapter 3: Constraints

Chapter 5: Long−only
Chapter 6: Long−short

Chapter 8: Trade Cost

Chapter 12: Utility

Chapter 7: General Use

Chapter 9: Practicalities

Chapter 7: General Use

Chapter 5: Long−only
Chapter 6: Long−short

Chapter 3: Constraints

Chapter 8: Trade Cost

Chapter 9: Practicalities

1.6. ROAD MAP 17

Figure 1.2: Possible route for utility-free optimization.

Chapter 7: General Use

Chapter 5: Long−only Optimization
especially Section 6.4

Chapter 3: Constraints

Chapter 9: Practicalities

18 CHAPTER 1. ORIENTATION

1.7 Typography Conventions

Computer commands or pieces of commands are written in this font. For
example, a variance argument is written as variance whenever it is the argu-
ment itself that is referred to. Entire commands are written in the same font.
Commands are introduced by “> ” (which is the prompt in the S language) so
that any output can be distinguished from the input. An example is:

> rep(0, 6)

[1] 0 0 0 0 0 0

The user types “rep(0, 6)” (followed by return), and the next line is the response
from S.

Commands may span more than a single line—the second and subsequent
lines of a command are introduced by “+ ”. For example:

> op <- trade.optimizer(prices, varian, gross.value=1e6,

+ long.only=TRUE)

The second line of the command starts with long.only (the “+ ” is not typed
by the user, but rather by S). There is no output in this example.

S code note

The only catch with multi-line commands is that it needs to be clear to S that
the command is incomplete. In this example the command needs a closing
parenthesis.

Occasionally a fragment of code is written, in which case there are no intro-
ductory prompts.

In addition to S code notes, there are boxes which contain “cautions” and
“notes”.

Chapter 2

Generating Random
Portfolios

The random.portfolio function generates a list of portfolios (or the trades for
them) that satisfy constraints but pay no attention to utility.

2.1 The Command

To generate random portfolios you give random.portfolio the number of ran-
dom portfolios that you want to generate, the basic information for the problem,
and the constraints that you would like. There is also the out.trade argument
which controls whether it is the random portfolio (the default) or the trade
which is output.

At a minimum you need to specify the vector of prices and the amount of
money in the portfolio. One possibility is:

> randport1 <- random.portfolio(prices=prices, long.only=TRUE,

+ gross.value=1e6)

Of course this is not very interesting. You are likely to want more than one
random portfolio, and to have non-trivial constraints imposed.

S code note

The notation 1e6 means 1,000,000, that is, a one followed by six zeros.

The prices (always required) needs to be a vector of positive numbers that
has names which identify the assets in the problem. Here is an example of the
first few values of a suitable price vector:

> head(pricevec)

stockA stockB stockC stockD stockE stockF

27.63 19.46 11.67 5.79 5.15 20.99

19

20 CHAPTER 2. GENERATING RANDOM PORTFOLIOS

The assets named in prices define the universe of assets for the problem. In
examples the prices argument is often given a vector called prices—in reality
the name of the vector can be whatever you like.

The other two pieces of “basic information” are the variance matrix and the
vector of expected returns—neither of these are required. You only need to give
these if they are involved in a constraint.

To generate 100 random portfolios that have country and sector constraints,
no more than a 4% tracking error and no more than 55 assets, the following
command would do:

> randport2 <- random.portfolio(100, prices, varian,

+ long.only=TRUE, gross.value=1e6,

+ bench.constraint = c(spx=.04^2/252),

+ port.size=55, lin.constraints=cntrysect.constraint,

+ lin.bounds=cntrysect.bounds)

S code note

The first three arguments in the call that creates randport2 do not need to
have the name of the argument specified because they are all in the order of
the arguments in the definition of the function. In contrast the call that creates
randport1 uses the argument name in all cases. If there is any doubt, then it
is safest to give the argument by name.

The examples so far assume that there is no existing portfolio (or that it
doesn’t matter). The existing argument gives the current portfolio.

> randport3 <- random.portfolio(100, prices, varian,

+ long.only=TRUE, gross.value=1e6,

+ bench.constraint = c(spx=.04^2/252),

+ existing=current.portfolio,

+ port.size=55, lin.constraint=cntrysect.constraint,

+ lin.bounds=cntrysect.bounds)

Sometimes it is more convenient to have the trades rather than the portfolios.
If you want the trades, just set the out.trade argument to TRUE:

> randtrade3 <- random.portfolio(100, prices, varian,

+ long.only=TRUE, gross.value=1e6,

+ bench.constraint = c(spx=.04^2/252),

+ existing=current.portfolio,

+ port.size=55, lin.constraint=cntrysect.constraint,

+ lin.bounds=cntrysect.bounds, out.trade=TRUE)

S code note

The full name of the out.trade argument must be given. This is unlike almost
all other arguments where only enough of the first portion of the name needs
to be given to make it unique among the arguments to the function. (For

2.2. WORKING WITH RANDOM PORTFOLIOS 21

a full explanation of argument matching in S, see [Burns, 1998] page 19 or
[Burns, 2011].)

If the existing argument is not given or is NULL, then it doesn’t matter
which value out.trade has—the output is the same in either case.

The result of a call to random.portfolio is a list where each component of
the list is a portfolio (or trade). The object has a number of attributes including
a class attribute ("randportBurSt"). Here is a small example:

> random.portfolio(2, priceten, gross.value=1e5,

+ long.only=TRUE, port.size=3, max.weight=.5)

[[1]]

stockA stockB stockJ

1337 1481 6484

[[2]]

stockB stockF stockH

1274 2382 3100

attr(,"call")

random.portfolio(number.rand = 2, prices = priceten,

gross.value = 1e+05,long.only = TRUE, port.size = 3,

max.weight = 0.5)

attr(,"timestamp")

[1] "Thu Mar 29 11:36:03 2012" "Thu Mar 29 11:36:03 2012"

attr(,"class")

[1] "randportBurSt"

seed attribute begins: 1 -1142929704 1716596987 -285978235

Each component of the list is a portfolio (or trade), which is a vector giving the
number of asset units (shares, lots, contracts) for each asset that appears.

2.2 Working with Random Portfolios

Valuation

The most likely thing to do with random portfolios is to get their valuation or
returns. This is discussed in Chapter 4.

Small Selections

You can use head to get the first few random portfolios, and tail to get the last
few. These are generic functions in R. Their random portfolio methods return
an object that retains the class and other attributes of the original object.

These functions can be useful to inspect the portfolios to see if they look
reasonable without printing hundreds or thousands of portfolios to the screen.
They can also be used to test commands, such as the example immediately
below.

22 CHAPTER 2. GENERATING RANDOM PORTFOLIOS

Evaluating Portfolios

The sister function to random.portfolio is trade.optimizer. It can be of
interest to see some of the values that the optimizer would return for each of
the random portfolios. The randport.eval function does that: for each of
the random portfolios (or trades) in the object it finds what the optimizer says
about it. You can select which components of the output of trade.optimizer
to keep (using the keep argument). The result is a list as long as the random
portfolio object and each component of that list is a list containing the kept
components.

Here is a small example of keeping the portfolio variances:

> randport.eval(head(randport4, 3), keep=’var.values’)

[[1]]

[[1]]$var.values

V0

382.3576

[[2]]

[[2]]$var.values

V0

147.6476

[[3]]

[[3]]$var.values

V0

134.6368

In this case where we are returning only one number per portfolio, it makes
more sense to coerce this to a numeric vector:

> unlist(randport.eval(head(randport4, 3), keep=’var.values’),

+ use.names=FALSE)

[1] 382.3576 147.6476 134.6368

Keep in mind that these values are ex ante predictions—they may or may not
have much relation to realized variance.

note

In randport.eval the optimizer is called using the same names of objects as
was used when the random portfolio object was originally created. Objects with
these names must be visible at the time that randport.eval is used. If any of
these objects has changed, then it is the current value rather than the original
value that is used.

caution

Additional arguments or changes to arguments may be given to randport.eval

so that what the optimizer does is not exactly what random.portfolio did. If
you are making a change to an argument, then you need to use the exact same
abbreviation (if any) as in the original call to random.portfolio.

2.3. EXPORTING RANDOM PORTFOLIOS 23

There is a FUN argument to randport.eval that, if given, applies that func-
tion to each of the portfolio objects that are created. For example, we could
do:

> randport.eval(head(randport4, 3), FUN=summary)

Or perhaps a more useful command along the same lines:

> do.call("rbind", randport.eval(randport4,

+ FUN=function(x) summary(x)$number.of.assets))

S code note

The command:

> do.call("rbind", some.list)

is equivalent to the command:

> rbind(some.list[[1]], some.list[[2]], ...,

+ some.list[[length(some.list)]])

Summary

The summary method for random portfolios shows how many assets are in the
portfolios, and the number of times each asset appears in a portfolio:

> summary(randport5)

$port.size

7 8 9 10

1 32 165 802

$count.assets

stockC stockD stockA stockB stockE stockF stockI

1000 1000 987 975 973 972 972

stockG stockH stockJ

968 961 960

This shows us that out of the 1000 portfolios, 802 contained all 10 assets, 165
had 9 assets, 32 had 8 assets and 1 had 7 assets. We also see that stockC and
stockD were both in all of the portfolios while stockJ was only in 960 of them.

2.3 Exporting Random Portfolios

The deport function will write files containing the result of random.portfolio.
The simplest use is:

> deport(randport2)

[1] "randport2.csv"

24 CHAPTER 2. GENERATING RANDOM PORTFOLIOS

This writes a comma-separated file where the columns each correspond to one
of the assets that appear in the object and the rows correspond to the portfolios
or trades. There are arguments that allow you to switch the meaning of rows
and columns, and to give a universe of assets (which must include all of those
appearing in the object). See the help file for details.

Writing monetary value

If you want the file to represent money rather than the number of asset units,
you can use the multiplier argument:

> deport(randport2, multiplier=prices, file="randval1")

[1] "randval1.csv"

2.4 Create a Matrix of Positions or Values

At times it is useful to have a matrix where columns represent assets and rows
represent random portfolios. There is a slightly devious way of getting this using
deport:

> randmat <- read.table(deport(randPortObj,

+ filename="rpfile", sep=","), sep=",", header=TRUE)

> randmat[is.na(randmat)] <- 0

> head(randmat)

stockA stockB stockC stockD stockE

1 54 43 54 115 267

2 33 49 128 37 277

3 24 37 128 259 121

4 45 77 127 134 0

5 38 25 86 166 291

6 54 54 128 0 187

The string used as filename is immaterial except that you don’t want to over-
write a file that you already have.

S code note

The object above called randmat is actually a data frame, not a matrix.
Sometimes it matters which you have, sometimes not. The functions as.matrix
and as.data.frame can be used to switch between them.

2.5 Combining Random Portfolio Objects

You may want to combine some random portfolio objects. Suppose you have
objects named rp1, rp2 and rp3 resulting from calls to random.portfolio.
You would like these to be in one object as they all have the same constraints
(or perhaps they have slightly different constraints but you want them all in the
same analysis). The c function will put them all together:

> rp.all <- c(rp1, rp2, rp3)

2.6. UNSATISFIABLE AND DIFFICULT CONSTRAINTS 25

But not all is well:

> deport(rp.all)

Error in deport(rp.all) : no applicable method for "deport"

> summary(rp.all)

Length Class Mode

[1,] 45 -none- numeric

[2,] 45 -none- numeric

[3,] 45 -none- numeric

[4,] 45 -none- numeric

...

Even though rp.all is basically correct, it doesn’t have the class that the other
objects have. Without the class, generic functions like summary, deport and
valuation don’t work as expected.

> class(rp.all) <- class(rp1)

> deport(rp.all)

[1] "rp.all.csv"

Once the class is put on the object, we can operate as usual.

Almost. If you want to use randport.eval, then you need the call attribute
as well. In that case, you could give the big object all of the attributes of one
of the original objects:

> attributes(rp.all) <- attributes(rp1)

2.6 Unsatisfiable and Difficult Constraints

Not all sets of constraints can be achieved. Obviously there are no portfolios that
satisfy a variance that is smaller than zero (or even smaller than the minimum
variance given the other constraints). If you set random.portfolio such a task,
it is bound to fail.

There is a trade-off between returning quickly when asked the impossible
and being successful when asked the merely difficult. There is, of course, a
default value for this trade-off, but you can adjust it for specific circumstances.
There are a number of control arguments that say how hard to work.

In terms of impossible constraints, the most important is init.fail. This
says how many separate attempts to make before quitting when there have been
no portfolios successfully found.

For each attempt there is a trio of arguments that control how hard to work
within the attempt. iterations.max gives the maximum number of iterations
before stopping. fail.iter is the maximum number of consecutive iterations
allowed that fail to make progress. miniter gives the minimum number of
iterations allowed even if fail.iter says to quit. (Of course if a portfolio is
found that satisfies all the constraints, then the attempt is declared successful
and stops no matter what the value of miniter.)

The remaining argument of this ilk is gen.fail. Let’s start with the prob-
lem that this argument solves. Suppose you have set a difficult problem for

26 CHAPTER 2. GENERATING RANDOM PORTFOLIOS

random.portfolio and you want 1000 portfolios. Suppose further that the
first attempt was successful (so clearly the problem is not impossible) but the
next one million attempts fail. As far as you are concerned you are waiting
forever. gen.fail times the number of portfolios requested is the maximum
number of failed attempts allowed.

In our example you requested 1000 and the default value of gen.fail is
4, so it would stop after 4000 failures and return the one random portfolio it
successfully found (and warn you that it didn’t do so well with your request).

Note that it is seldom obvious whether a specific set of constraints is easy
to satisfy, difficult to satisfy or impossible.

2.7 Adding a Utility Constraint

The random.portfolio function does not allow a constraint on the utility, but
random.portfolio.utility does. If computation time is of concern, then it
can be better to just use random.portfolio with constraints on the variance
and expected returns. However, this may not be quite what you want.

There is not much difference between the functions in terms of how they are
used. The key difference is the objective.limit argument. The objective is
the negative of the utility. So if you want the utility to be at least 0.6, then you
want the argument:

objective.limit = -0.6

The meaning of gen.fail is the same, but the other control arguments are
those used with optimization.

There are two forms of failure:

• the objective does not achieve objective.limit

• the objective is okay, but there are other broken constraints

The objfail.max argument controls how many of the first type are allowed.
If objfail.max=1 (the default) and the first try does not achieve the objective
limit, then an error is triggered.

The calls look like:

> rp1 <- random.portfolio(100, the.prices, ...)

> ru1 <- random.portfolio.utility(100, -0.6, the.prices, ...)

2.8 Going Farther

Tasks that you might want to undertake:

• Chapter 3 discusses how to specify the constraints.

• Chapter 4 shows how to get valuations and returns.

• To review common mistakes, see Section 9.1 on page 101.

Chapter 3

Constraints

This chapter covers the constraints that can be imposed for generating random
portfolios and for optimization. random.portfolio and trade.optimizer use
the exact same set of constraint arguments.

3.1 Summary of All Constraints

Table 3.1 lists the possible constraints along with the arguments used to achieve
them. In addition to these explicit constraints, there is the implicit constraint
of trading integer numbers of asset units.

Round Lots

Trading is only done in integer numbers of asset units except when there is an
existing position that is non-integral. Thus if the prices are given for lots as
opposed to shares, then round lotting is automatic.

3.2 Monetary Value of the Portfolio

This section discusses the arguments:

• gross.value

• net.value

• long.value

• short.value

• turnover

• long.only

• allowance

27

28 CHAPTER 3. CONSTRAINTS

Table 3.1: Summary of constraints.
Arguments Constraint Section

gross.value

net.value 3.2
long.value monetary value of the portfolio
short.value

allowance

turnover turnover (buys plus sells) 3.2
long.only no short values if TRUE 3.2
max.weight maximum weight in the portfolio per asset 3.3

universe.trade restrict assets to be traded 3.3
lower.trade lower and upper bounds on the 3.3
upper.trade the number of asset units to trade

risk.fraction fraction of variance attributed to assets, 3.3
rf.style also asset correlation with the portfolio
rf.loc

ntrade number of assets to trade 3.4
port.size number of assets in the portfolio 3.4
threshold threshold constraints on trade and portfolio 3.5

forced.trade trades that must be done 3.6
positions otherwise available constraints 3.7

tol.positions expressed in monetary terms
lin.constraints

lin.bounds linear constraints
lin.trade on the portfolio 3.8
lin.abs and/or the trade 3.9

lin.style using weights, values, variances, counts
lin.direction

lin.rfloc

alpha.constraint bound on expected 3.10
return of the portfolio

var.constraint bound on variance of the portfolio 13.3
bench.constraint bound on squared tracking error 3.12

dist.center

dist.style

dist.bounds distance from one or more portfolios 3.13
dist.trade

dist.utility

dist.coef

sum.weight max (and min) of the sum of a specified 3.14
number of the largest weights

limit.cost allowable range of costs 3.15
close.number number of positions to close 3.16

3.2. MONETARY VALUE OF THE PORTFOLIO 29

While there is no single monetary argument that needs to be given, it is manda-
tory that the monetary value of the portfolio be constrained somehow.

All of the monetary arguments are in the currency units that prices uses.

In all cases it is sufficient to only give turnover. The argument:

turnover = 12000

says that the buys plus sells of the trade can not exceed 12,000 currency units.
While this makes most sense when there is an existing portfolio, that is

not necessary. The turnover can, of course, be constrained even when other
monetary constraints are given.

The turnover can be expressed as an interval:

turnover = c(11000, 12000)

When only one number is given, the implied lower bound is zero.

How the other monetary arguments are used largely depends on whether or
not the portfolio is long-only.

Long-only Portfolios

If you want long-only portfolios, then you need to set the long.only argument
to TRUE (the default is FALSE).

You can state the amount of money in the resulting portfolio by giving the
gross.value argument. Ultimately this needs to be a range of allowable values.
You can give the range explicitly with a vector of two numbers:

gross.value = c(999900, 1e6)

Alternatively you can give a single number:

gross.value = 1e6

When a single number is given, this is taken to be the upper bound—the lower
bound is computed via the allowance argument. The default allowance is
0.9999, that is, one basis point away. So (by default) the above two specifications
of gross.value are equivalent.

In general there is no problem with a constraint this tight—the key thing
is how wide the range is relative to the prices of the assets. There will be a
warning if the interval is seen to be too narrow.

In the case of long-only portfolios, net.value and long.value are synonyms
for gross.value, so you can give any one of these three.

Long-short Portfolios

The arguments gross.value, net.value, long.value and short.value con-
trol the value of the portfolio.

To be clear: The long value is the amount of money in positive positions.
The short value is the amount of money in negative positions—this is meant to
be a positive number, but the absolute value of negative numbers is taken for

30 CHAPTER 3. CONSTRAINTS

the short value. The gross value is the sum of the long and short values. The
net value is the long value minus the short value.

There are two minimal sets of these arguments:

• gross.value and net.value

• long.value and short.value

Here are some examples:

gross.value = 1e6, net.value = c(200, 3000) # OK

long.value = 6e5, short.value = 5e5 # OK

gross.value = 1e6, net.value = c(0, 2e5), long.value=6e5 # OK

gross.value = 1e6, long.value = 6e5 # not OK, neither pair

These four arguments are logically each of length two—giving allowable ranges.
If they only have length one, then the second value is computed by multiplying
the given value by the allowance argument. The default value for allowance

is 0.9999, that is, one basis point away—you may want to alter this depending
on how important the tightness of these constraints is to you, and on the size
of the portfolio relative to the prices of the assets.

The allowance computation is unlikely to be what is desired for net.value,
so it is recommended that net.value always have length two. Section 6.4 on
page 86 gives more details about constraining the value of the portfolio.

There are two cases that are of particular interest: dollar neutral portfolios
and portfolios in the genre of 120/20.

Dollar Neutral Portfolios

A dollar neutral portfolio implies that the net value is zero. This is a case where
the rule that net.value should only be given as an interval might be relaxed.
The argument:

net.value = 0

translates into an interval that is symmetric around zero and the radius of the
interval is the gross value times one minus allowance.

Even so it is probably better to explicitly set your interval for the net value.

120/20 and 130/30 Portfolios

The simplest way to get these is to give constraints just like the stated aim:

long.value = 1.2 * NAV, short.value = 0.2 * NAV

or possibly a range can be given:

long.value = c(1.2, 1.25) * NAV,

short.value = c(0.2, 0.25) * NAV,

net.value = c(.999, 1.0) * NAV

3.3. LIMITS ON ASSETS 31

3.3 Limits on Assets

This section discusses the arguments:

• max.weight

• enforce.max.weight

• universe.trade

• lower.trade

• upper.trade

• risk.fraction

• rf.style

• rf.loc

max.weight

One typical use of the max.weight argument is:

max.weight = 0.05

This limits the maximum weight of each asset to 5% of the gross value of the
portfolio. The weight is the absolute value of the monetary value of the position
divided by the gross value. (So even in long-short portfolios the absolute weights
always sum to 1.)

If you have a constraint like this, then it probably makes more sense to use
the risk.fraction argument (see page 33) than max.weight.

The other typical use is to give max.weight a named vector that states the
maximum weight for each asset. Assets that are not named are not restricted.

Example

If you want to allow a few assets to have larger weights, then you can create a
vector of all the pertinent assets. Suppose you want almost all assets to have
weight no more than 5% and a few to have weight no more than 7.5%. Then
you could create the appropriate vector by:

> maxw.spec <- rep(0.05, length=length(prices))

> names(maxw.spec) <- names(prices)

> maxw.spec[spec.assets] <- 0.075

The maxw.spec vector would then be given as the max.weight argument.

A related argument is the control argument enforce.max.weight. When
this is TRUE (the default) and if there are positions in the existing portfolio that
will break the maximum weight constraint, then forced trades are created to
make them conform to the maximum weight.

32 CHAPTER 3. CONSTRAINTS

caution

There are circumstances in which the max.weight argument does not guar-
antee that the maximum weight in the final portfolio is obeyed if the weight is too
large in the existing portfolio. A warning may not be given (since max.weight

merely limits the extent of trading of the assets).

One case is if the control argument enforce.max.weight is FALSE. When
this argument is TRUE (the default), then forced trades are automatically built
to make the positions conform to their maximum weights. This is done for the
maximum of the range of the gross value. If the range for the gross value is
large and the resulting portfolio has a gross value substantially smaller than the
maximum allowed gross, then some maximum weights could be broken.

It is also possible that a maximum weight is broken by enough that the trade
can not be forced to be large enough. In this case, the trade is forced to be as
large as possible if enforce.max.weight is TRUE.

If the maximum weight is the same for all assets, then you can ensure that
it is obeyed by using sum.weight (well, either it’s obeyed or you see a warning
about it). To just constrain the largest weight, the sum.weight argument (see
Section 3.14) would look like:

sum.weight = c("1"=.1)

This restricts the largest weight to 10%.

universe.trade

The universe.trade argument should be a vector of character strings contain-
ing some of the asset names. Those will be the only assets allowed to trade.

If this argument is NULL (the default), then there is no constraint on the
assets to trade (except possibly for benchmarks).

lower.trade and upper.trade

The lower.trade and upper.trade arguments are given in asset units (shares,
lots or whatever). As their names suggest, they limit the number of units that
can be sold or bought. Like max.weight they can be given a single unnamed
number or a vector with names corresponding to assets. Assets not named are
not restricted.

Values in lower.trade can not be positive, and values in upper.trade can
not be negative. This would be forcing the asset to trade. You can force
trades, but not with these arguments—see forced.trade (page 38) or possibly
positions (page 38).

One use of these arguments is to create a selection of assets to buy and
a selection of assets to sell as seen on page 83 for long-short portfolios and
on page 77 for long-only portfolios. More traditional uses include imposing
liquidity constraints and constraining the amount of particular assets in the
final portfolio.

3.3. LIMITS ON ASSETS 33

Liquidity Constraints

Suppose that you want to constrain trades to a certain fraction of average daily
volume. The commands you would use to do this would be similar to:

> liquidity <- 0.25 * ave.daily.volume

Then you could use this like:

upper.trade = liquidity, lower.trade = -liquidity

The process of constraining the liquidity merely involves computing the max-
imum amount of each asset that should be traded; setting the upper.trade

argument to this amount; and setting the lower.trade argument to the nega-
tive of that amount.

In this example it is assumed that ave.daily.volume is a vector of numbers
that has names which are the names of the assets—similar to the prices vector.
These two vectors need not have the same assets. If there are assets in the daily
volume vector (and hence in liquidity) that are not in prices, then these will
be ignored. If prices has assets that are not in liquidity, then the missing
assets will not be limited by the upper.trade and lower.trade arguments.

caution

Make sure that the units for the volume are the same as those for the prices.
An easy mistake would be to try to limit trading to 10% of daily volume, but
instead limit it to 10 times daily volume because the volume is in shares while
the prices are in lots.

Another sort of liquidity constraint is to limit the amount of assets in the
portfolio to n days of average volume. This is a case where using positions

is an easier and safer approach. See page 39 for an example of getting this
constraint using positions.

risk.fraction

The risk.fraction argument does what the max.weight argument is often
unconsciously thought to do.

The variance of the portfolio can be partitioned into pieces attributed to
each asset. In S notation with w denoting the weight vector and V the variance
matrix, the partition is:

w * V %*% w # equation rf1

and we can turn that into the fraction of variance with:

w * V %*% w / (w %*% V %*% w) # equation rf2

By default the risk.fraction argument—if given—constrains the fractions of
the variance in the partition. A command that includes:

risk.fraction = .05

34 CHAPTER 3. CONSTRAINTS

means that all assets are constrained to have a variance fraction of no more
than 5%.

Constraints need not be the same on all assets. An example of different
constraints for different assets is:

risk.fraction = c(ABC=.1, DEF=.015, GHI=.07)

In the example above other assets would not have their variance fraction con-
strained. If these were the only assets, then it would be an error because the
bounds sum to less than 1.

You can have lower constraints as well as upper constraints by using a two-
column matrix. The first column is the lower bounds, and the upper bounds
are in the second column. The assets are identified with the row names. Just
as with a vector, not all assets need to be represented.

Benchmark

When there is a benchmark, then the equation above is slightly more complex:

(w - b) * V %*% (w - b) / ((w - b) %*% V %*% (w - b)) #eq rf3

where b is the vector of weights for the benchmark.
When there is a benchmark and you are constraining the variance fractions,

you need to specify the benchmark weights (in terms of the other assets). Thus
besides using the risk.fraction argument, you would do something like:

benchmark="Ben", bench.weights=list(Ben=c(A=.3, B=.3, C=.4))

Notice that the bench.weights argument takes a list with the name of each
component being the name used for a benchmark.

If there is more than one variance-benchmark combination, then a three-
dimensional array can be given as risk.fraction to specify the constraint
bounds.

rf.style

What has been discussed so far in terms of risk fractions uses only the default
value ("fraction") for the rf.style argument. Table 3.2 lists the possible
choices.

The "fraction" choice means that it is equation rf2 or rf3 that describes
the quantities being constrained.

For "value" it is equation rf1 or its equivalent with a benchmark that will
be used.

Marginal contribution to the benchmark

There is an argument to constrain the risk adjusted for the marginal contribution
to the benchmark.

The marginal contribution is a number that can be computed as:

3.3. LIMITS ON ASSETS 35

Table 3.2: Choices for the rf.style argument.
value meaning

"fraction" fraction of the portfolio variance for each asset
"value" value of the portfolio variance for each asset

"marginalbench" fraction of variance adjusted by marginal contribution
"valmargbench" value of variance adjusted by marginal contribution

"corport" correlation of assets with the portfolio
"abscorport" absolute value of correlation with the portfolio
"incorport" correlation for assets only in the portfolio

"absincorport" absolute correlation for assets only in portfolio

b %*% V %*% (w - b)

The quantity that is being constrained with the "valmargbench" choice is:

(w - b) * (V %*% (w - b) - b %*% V %*% (w - b)) #eq rf4

The quantity for "marginalbench" is equation rf4 divided by the portfolio vari-
ance.

Correlation of assets to the portfolio

The correlation of each asset to the portfolio is sometimes of interest – usually
related to the concept of dispersion.

One way of thinking about correlation is to start with equation rf1 and then
scale it by the volatilities of the asset and the portfolio (instead of scaling by
the portfolio variance).

A constraint like:

risk.fraction = .7

has various meanings depending on the value of rf.style:

• For style "corport" it means that all assets are to have a correlation with
the portfolio less than 70% (a correlation of -80% is allowed).

• For style "abscorport" the absolute value of the correlation of all assets
is to be less than 70% (-80% not allowed).

• For styles "incorport" and "absincorport" the constraints only apply
to assets that are in the portfolio—an asset may have a correlation of 80%
if it is not in the portfolio.

rf.loc

The rf.loc argument only applies if there is more than one variance-benchmark
combination. It is the zero-based column number of vtable that is desired for
each risk fraction constraint.

36 CHAPTER 3. CONSTRAINTS

3.4 Number of Assets

This section discusses the arguments:

• ntrade

• port.size

Often these two constraints should be thought of as convenient shortcuts to
threshold constraints (page 37).

Number of Assets to Trade

The ntrade argument controls the number of assets that may be traded. Gen-
erally it is given as a single number, meaning the maximum number to trade.
The argument:

ntrade = 25

says that no more than 25 assets will be traded.

If you do not want a limit on the number of assets traded, then set ntrade
to the size of the universe (or larger). The default is to have no limit.

If you desire a minimum number of assets traded, then give ntrade a length
two vector. For example:

ntrade=c(4, 25)

states that the number of assets traded needs to be between 4 and 25, inclu-
sive. A minimum number to trade is most likely to be useful when threshold
constraints (Section 3.5) are used as well. Otherwise trading just one unit of an
asset counts.

The minimum number to trade is more useful for generating random port-
folios than in optimizing.

Number of Assets in the Portfolio

The port.size argument constrains the number of assets in the constructed
portfolio. Like ntrade, this can be given as either a single number (meaning
the upper bound), or as a length 2 vector giving the range.

The argument:

port.size = 50

means no more than 50 assets may be in the portfolio, while:

port.size = c(50, 50)

means that exactly 50 assets need to be in the portfolio.

3.5. THRESHOLD CONSTRAINTS 37

3.5 Threshold Constraints

This section discusses the argument:

• threshold

The threshold argument controls two types of threshold constraints—trade
thresholds and portfolio thresholds. Threshold constraints may also be specified
with positions (page 38). Note that in any one call you can only declare
threshold constraints with one of these arguments (though both arguments can
be used in one call).

Trade Thresholds

Trade threshold constraints force trades to be at least a certain amount of an
asset if it is traded at all.

The argument:

threshold=c(ABC=4, DEF=23))

demands that at least 4 units (lots perhaps) of asset ABC and at least 23 units
of DEF be bought or sold if they are traded at all. This is not the same as
forcing a trade of a certain size—that is discussed in Section 3.6.

When the threshold argument is a vector (or a one-column matrix), then
the constraint is taken to be symmetric. Another way of stating the constraint
given above would be:

threshold=rbind(ABC=c(-4,4), DEF=c(-23,23)))

where what we are giving to threshold looks like:

> rbind(ABC=c(-4,4), DEF=c(-23,23)))

[,1] [,2]

ABC -4 4

DEF -23 23

Give a two-column matrix when you want different constraints for buying and
selling for at least one of the assets.

threshold=rbind(ABC=c(-5,4), DEF=c(0,23)))

The command above states that if ABC is sold, then at least 5 units should be
sold. If ABC is bought, then at least 4 units should be bought. If DEF is bought,
then at least 23 units should be bought. There is no threshold constraint if DEF
is sold.

Portfolio Thresholds

A portfolio threshold constraint states the minimum number of units of an asset
that should be held in the portfolio. For example, you may prefer to have no lots
of ABC if less than 7 lots are held. Portfolio thresholds are specified similarly to
trade thresholds except they are in the third and fourth columns of the matrix
instead of the first and second.

Here is an example:

38 CHAPTER 3. CONSTRAINTS

> thresh.m1 <- cbind(0, 0, rbind(ABC=c(-7, 7), DEF=c(-5, 8)))

> thresh.m1

[,1] [,2] [,3] [,4]

ABC 0 0 -7 7

DEF 0 0 -5 8

If thresh.ml is given as threshold, then there should be at least 7 units of
ABC—either long or short—if it is in the portfolio at all. Also DEF should be
at least 5 short or at least 8 long or not in the portfolio. In this case there are
no trading threshold constraints since the first two columns are all zero.

Summary of Threshold Inputs

• A vector or a one-column matrix: symmetric trading constraints.

• A two-column matrix: symmetric or asymmetric trading constraints.

• A three-column matrix: first two columns are trading constraints, third
column is portfolio constraint for long-only portfolios. It is an error to
give a three-column matrix with long-short portfolios.

• A four-column matrix: first two columns are trading constraints, third
and fourth columns are portfolio constraints.

3.6 Forced Trades

This section discusses the argument:

• forced.trade

The forced.trade argument is a named vector giving one or more trades that
must be performed. The value gives the minimal amount to trade and the names
give the assets to be traded. For example:

forced.trade = c(ABC=-8, DEF=15)

says to sell at least 8 units (lots) of ABC and buy at least 15 units of DEF. If
you wanted to buy exactly 15 units of DEF, then you would say:

forced.trade = c(ABC=-8, DEF=15), upper.trade=c(DEF=15)

Trades may also be automatically forced if the existing portfolio breaks maxi-
mum weight constraints—see page 32). The positions argument can also force
trades.

3.7 Positions

This section discusses the arguments:

• positions

3.7. POSITIONS 39

• tol.positions

The positions argument does not embody any constraints that can’t be achieved
with other arguments. It exists because the constraints can sometimes be more
conveniently expressed via positions.

The constraints that positions can do are:

• max.weight

• universe.trade

• lower.trade

• upper.trade

• threshold

• forced.trade

The key difference between positions and these other constraints is that positions
is expressed in monetary value. In examples we will assume the currency unit
is dollars, but it is really the currency unit that the prices vector is in.

The positions argument takes a matrix with rows representing assets, and
2, 4 or 8 columns. Not all assets in the problem need to be present in positions

but (by default) there will be a warning if not.

Portfolio constraints

The first two columns of positions contain portfolio constraints. Column 1 is
the minimum amount of money that is allowed in the portfolio for each of the
assets. Column 2 is the maximum amount of money.

So this includes the max.weight constraint. If both positions and max.weight

are given, then whichever is the stronger for each asset is the actual constraint.

n days of daily volume in portfolio

On page 33 there is an example of imposing liquidity constraints on the trade.
Here we want to impose liquidity constraints on the portfolio.

Suppose that we want to restrict positions in the portfolio to be no more
than 8 days of average volume. Since positions is expecting monetary value
rather than the number of asset units, we first need to transform to money:

> liquid.value <- ave.daily.volume[names(prices)] * prices

> any(is.na(liquid.value)) # trouble if this is TRUE

There are a couple things to note here. We are assuming that the volume and
the prices refer to the same asset units—we don’t want one to be in shares and
the other in lots. We’ll see on page 41 why the occurrence of missing values
would be upsetting.

Now we are ready to build our matrix to give to the positions argument.
If we have a long-only portfolio, then the matrix can be:

40 CHAPTER 3. CONSTRAINTS

> posmat1 <- cbind(0, 8 * liquid.value)

If we have a long-short portfolio, then it would be:

> posmat2 <- 8 * cbind(-liquid.value, liquid.value)

Let’s do one more supposition. Suppose that we have a long-only portfolio and
we want no position to be larger than $300,000 as well as having the liquidity
constraint. You might be tempted to impose that with a command like:

> posmat1[, 2] <- min(3e5, posmat1[, 2]) # WRONG

Note that there is no warning from this—S has no way of knowing that you are
doing something you don’t really want to do. What you do want to do is:

> posmat1[, 2] <- pmin(3e5, posmat1[, 2]) # right

The min function returns just one number which is the minimum of all the
numbers it sees. The pmin function does a minimum for each element, which is
what we want in this instance.

Trade constraints

Trade constraints are imposed with the third and fourth columns of positions.
If you want to impose trade constraints without imposing portfolio constraints,
then you can just make the first two columns infinite. For example, if we want
selling of each asset to be limited to $5000 and buying of each asset to be limited
to $8000, then we could create a matrix like:

> posmat3 <- cbind(rep(-Inf, length(prices)), Inf,

+ -5000, 8000)

> head(posmat3)

[,1] [,2] [,3] [,4]

[1,] -Inf Inf -5000 8000

[2,] -Inf Inf -5000 8000

[3,] -Inf Inf -5000 8000

[4,] -Inf Inf -5000 8000

[5,] -Inf Inf -5000 8000

[6,] -Inf Inf -5000 8000

> dimnames(posmat3) <- list(names(prices), NULL)

These constraints are essentially identical to lower.trade and upper.trade

except they are expressed in money rather than asset units, and it is possible
to impose forced trades with the positions constraints.

Forced constraints

A trade is forced either if the range for the portfolio does not include the current
position, or if the trading range does not include zero. This substitutes for using
forced.trade.

Forced trades from positions cause the output of trade.optimizer to
have a component named positions.forced which will show the forced trades
created.

3.7. POSITIONS 41

Universe constraints

If there is a missing value (NA) in any of the first four columns of positions,
then the corresponding asset is not allowed to trade. (It is an error to have a
missing value in the fifth through eighth columns.) These constraints could be
achieved by using the universe.trade argument.

Be careful not to let missing values stray in by accident. The summary of
optimized portfolios tells how many assets positions forces not to trade.

Threshold constraints

The 5th through the 8th columns of positions are for threshold constraints.
All four of these columns need to be given if any are given. Note also that if
these columns are given, then the threshold argument can not be given.

You can put null constraints in columns that you don’t want to have influ-
ence. The most extreme possibility in this regard is if you want to use positions
to only impose a portfolio threshold on a long-only portfolio. Suppose you want
only positions that have at least $20,000, then you could build the positions

matrix like:

> posmat4 <- cbind(rep(-Inf, length(prices)), Inf, -Inf, Inf,

+ 0, 0, 0, 2e4)

> head(posmat4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] -Inf Inf -Inf Inf 0 0 0 20000

[2,] -Inf Inf -Inf Inf 0 0 0 20000

[3,] -Inf Inf -Inf Inf 0 0 0 20000

[4,] -Inf Inf -Inf Inf 0 0 0 20000

[5,] -Inf Inf -Inf Inf 0 0 0 20000

[6,] -Inf Inf -Inf Inf 0 0 0 20000

> dimnames(posmat4) <- list(names(prices), NULL)

Tolerance

Imagine a situation where asset ABC is restricted to be no more than $50,000
in the portfolio. At time 1 the optimizer likes ABC and buys enough that it
is close to that upper limit. From time 1 to time 2 ABC dutifully does well,
so now it is above the $50,000 limit. Assuming the limit remains the same for
time 2, then the optimizer will force a sale of some ABC. So we are performing
a trade (probably of a trivial amount) for a rather arbitrary reason.

If there is a trade threshold constraint on selling ABC, then it is even worse—
we are effectively forcing a sale of at least the threshold amount.

The tol.positions argument solves this problem. If tol.positions is
zero (the default), then the constraints are taken as stated. If tol.positions
is positive, then assets that violate portfolio constraints in positions by a value
less than tol.positions are not forced to trade.

In our example if the value of the position of ABC at time 2 is $50,203, then
at least $203 worth of ABC will be forced to be sold if tol.positions is less
than $203. But there will not be a forced trade if tol.positions is greater
than $203.

42 CHAPTER 3. CONSTRAINTS

Note that this tolerance only applies to assets that are already in the existing
portfolio.

Summary of positions inputs

• 2-column matrix: lower and upper constraints on the value of portfolio
positions.

• 4-column matrix: 1-2) constraints on portfolio positions; 3-4) constraints
on the value of sells and buys in the trade.

• 8-column matrix: 1-2) constraints on the portfolio positions; 3-4) con-
straints on the trade; 5-6) threshold constraints on the values of trades;
7-8) threshold constraints on the values in the portfolio. (Note: portfolio-
trade-trade-portfolio.)

3.8 Linear Constraints

This section describes the arguments:

• lin.constraints

• lin.bounds

• lin.trade

• lin.abs

• lin.style

• lin.direction

• lin.rfloc

These arguments create linear constraints on the portfolio and/or the trade.
These arguments can also impose count constraints—a topic that is discussed
in the next section (page 52).

Portfolio Probe makes a distinction between numeric constraints and con-
straints based on categories. An example of the first is a bound on twice the
value of asset ABC minus 1.5 times the value of asset DEF minus the value of
asset GHI. An example of the second is bounds on the value from each country
in the asset universe.

Linear constraints are used when there is aggregation across assets. If a
constraint only involves one asset at a time, then there are other constraints that
are more expedient—for instance, max.weight, risk.fraction or threshold.

Building Constraints

To impose linear constraints you must specify at least two arguments—you can
accept default values of other arguments. The two key arguments are:

• lin.constraints

3.8. LINEAR CONSTRAINTS 43

• lin.bounds

The lin.constraints argument gives the numbers or categories for each asset
for each constraint. lin.bounds provides the lower and upper bound for each
(sub)constraint. Because the functions are picky about these arguments, it is
best to create them with the build.constraints function.

The build.constraints function takes a vector, a matrix, a factor or a
data frame containing the information for the lin.constraints argument. The
vector or matrix can be character, numeric or logical. A data frame is required
if you have a mixture of types.

In this example, we are giving a character matrix with two columns—one
for countries and one for sectors:

> cons.obj <- build.constraints(cbind(country=countryvec,

+ sector=sectvec))

> names(cons.obj)

[1] "lin.constraints" "bounds"

The result of build.constraints is a list with two components. The first
component, lin.constraints, is suitable to give as the lin.constraints argu-
ment, the bounds component is the template for an object to give as lin.bounds.
The lin.constraints object must have column names, so build.constraints

will add column names if they are not already there. (The column names are
used to keep track of which bounds go with which constraint.)

> cons.obj$lin.constraints[1:3,]

country sector

ABC "Spain" "media"

DEF "France" "retail"

GHI "Italy" "energy"

> cons.obj$bounds

lower upper

country : France -Inf Inf

country : Italy -Inf Inf

country : Spain -Inf Inf

sector : energy -Inf Inf

sector : media -Inf Inf

sector : retail -Inf Inf

sector : telecom -Inf Inf

The typical use of the bounds component is to create a separate object out of it,
and then change any of the infinite values desired—there are examples below.

Bounds and lin.style

What the bounds look like depends on the style of the constraint. Table 3.3
shows the possible values that can be given for lin.style.

For historical reasons the default for lin.style is "weight". However, from
an investment point of view, it might be better if the default were "varfraction".

44 CHAPTER 3. CONSTRAINTS

Table 3.3: Choices for the lin.style argument.
value meaning

"weight" aggregate of weights (position value divided by gross)
"value" aggregate of monetary value

"varfraction" aggregate of asset fraction of variance
"varvalue" aggregate of asset contribution to variance

"varmbfraction" variance fraction adjust for marginal contrib to benchmark
"varmbvalue" variance value adjust for marginal contrib to benchmark

"count" number of assets (see Section 3.9)

The variance fraction constraint is almost surely closer to what is in the in-
vestor’s head than the weight constraint.

If we want bounds in terms of weights (or a variance fraction), then we could
create the bounds matrix something like:

> bounds.csw <- cons.obj$bounds

> bounds.csw[1:2,] <- c(.1, .2, .4, .5)

> bounds.csw[3, 2] <- .2

> bounds.csw[5,] <- c(.3, .6)

> bounds.csw

lower upper

country : France 0.1 0.4

country : Italy 0.2 0.5

country : Spain -Inf 0.2

sector : energy -Inf Inf

sector : media 0.3 0.6

sector : retail -Inf Inf

sector : telecom -Inf Inf

We could then use the arguments:

lin.constraints = cons.obj$lin.constraints,

lin.bounds = bounds.csw, gross.value = 1e6

If on the other hand, we want bounds in terms of monetary value, then we could
do:

> bounds.csv <- cons.obj$bounds

> bounds.csv[1:2,] <- c(1e5, 2e5, 4e5, 5e5)

> bounds.csv[3, 2] <- 2e5

> bounds.csv[5,] <- c(3e5, 6e5)

> bounds.csv

lower upper

country : France 1e+05 4e+05

country : Italy 2e+05 5e+05

country : Spain -Inf 2e+05

sector : energy -Inf Inf

sector : media 3e+05 6e+05

sector : retail -Inf Inf

sector : telecom -Inf Inf

3.8. LINEAR CONSTRAINTS 45

Now the arguments would be:

lin.constraints = cons.obj$lin.constraints,

lin.bounds = bounds.csv, gross.value = 1e6,

lin.style = "value"

In this case we need to give the lin.style argument because we are using a
non-default value for it.

It is also possible to mix styles:

> bounds.csmix <- bounds.csw

> bounds.csmix[1:3,] <- bounds.csv[1:3,]

> bounds.csmix

lower upper

country : France 1e+05 4e+05

country : Italy 2e+05 5e+05

country : Spain -Inf 2e+05

sector : energy -Inf Inf

sector : media 0.3 0.6

sector : retail -Inf Inf

sector : telecom -Inf Inf

Changing the problem slightly, the arguments become:

lin.constraints = cons.obj$lin.constraints,

lin.bounds = bounds.csv, gross.value = 1e6,

lin.style = c("value", "varfraction")

There is no need for any particular pattern of finite bounds. In this example,
the only sector we are bounding is media.

Once a bounds matrix has been set up, it can be used when building new
constraint objects. Suppose that we want to change from sectors to industries,
we can build new constraints like:

> cons.obj2 <- build.constraints(cbind(country=countryvec,

+ industry=industvec), bound=bounds.csw)

S code note

In the cbind command, we are assuming that countryvec and industvec have
the same assets in the same order. A safer approach would be:

> ci.inam <- intersect(names(countryvec), names(industvec))

> cbind(country=countryvec[ci.inam],

+ industry=industvec[ci.inam])

46 CHAPTER 3. CONSTRAINTS

The bounds component of cons.obj2 will have the same bounds for the coun-
tries as bounds.csw and will have infinite bounds for the industries.

A bounds object that is actually used may contain extraneous bounds—for
example bounds for sectors when only countries are being constrained. How-
ever, it is an error not to give bounds for all of the constraints represented in
lin.constraints.

Linear Constraints on Variance Partitions

Styles "varvalue" and "varmbvalue" are really quadratic constraints, and
styles "varfraction" and "varmbfraction"are dynamic quadratic constraints.
But given the partitions of variance (see the discussion of risk.fraction in
Section 3.3), then the constraints done here are just linear aggregations.

When an investor wants a constraint of 20% to 30% on the Energy sector,
they very likely want to constrain the fraction of risk to that range rather
than the fraction of money. The technology for the former didn’t used to be
available—hence the ubiquity of the latter.

There are some restrictions on the variance partition constraints:

• lin.abs must be TRUE for the variance partition constraints, FALSE values
are coerced to be TRUE. (Switching signs of variance partitions and then
summing doesn’t make sense, which is the image that at least some would
have.)

• lin.trade must be FALSE—the variance for the trade is not computed.

If there is more than one variance-benchmark combination, then the lin.rfloc
argument specifies which column of vtable (see page on page 126) is to be used
with each constraint. It is zero-based, and ignored for constraints that don’t
use the variance.

Numerical Constraints: Risk Factors

Only categorical constraints have been discussed so far. We now look at numer-
ical constraints.

Constraining risk factors is perhaps the most common numerical linear con-
straint. In a fixed income portfolio duration would be another example.

Whether constraints are numerical or categorical, the first step is to use
build.constraints:

> cons.obj3 <- build.constraints(cbind(Risk1=beta1))

> head(cons.obj3$lin.constraints)

Risk1

stockA 1.3119461

stockB 0.9886379

stockC 1.1688637

stockD 0.8160228

stockE 1.0312180

stockF 1.2067453

> cons.obj3$bounds

3.8. LINEAR CONSTRAINTS 47

lower upper

Risk1 -Inf Inf

> cons.obj3$bounds[] <- c(0.9, 0.95)

> cons.obj3$bounds

lower upper

Risk1 0.9 0.95

S code note

Two things:
First, the use of cbind in the first line of the example above is merely an

easy way to create a one-column matrix that has a name for the column.

Second, you might be tempted to do:

> cons.obj3$bounds <- c(0.9, 0.95)

instead of

> cons.obj3$bounds[] <- c(0.9, 0.95)

The difference is that the first of these will result in a plain vector while the
second retains the matrix structure of the original object. We want that matrix
structure—the row names in particular.

We would now use the arguments:

lin.constraints = cons.obj3$lin.constraints,

lin.bounds = cons.obj3$bounds

Constraining more than one risk factor is straightforward.

> cons.obj4 <- build.constraints(cbind(Risk1=beta1,

+ Risk2=beta2))

> head(cons.obj4$lin.constraints)

Risk1 Risk2

stockA 1.3119461 0.8972907

stockB 0.9886379 0.9784834

stockC 1.1688637 0.7135961

stockD 0.8160228 1.1195767

stockE 1.0312180 1.0847337

stockF 1.2067453 1.0977745

Now just create the bounds that you want and use the arguments as before.

Numerical Constraints: Market Capitalization

If you want to have a portfolio that has a similar average market capitalization
as an index, then you can impose this as a linear numerical constraint. We
assume here that the index is weighted by market capitalization and we have
the weights for the index.

The first step is to use build.constraints as before:

48 CHAPTER 3. CONSTRAINTS

> cons.mcap <- build.constraints(cbind(Mcap=index.wts))

The possibly surprising part is what the bound looks like. The value for this
constraint (assuming a weight style as opposed to value) that the index has is
the sum the squared weights:

> mcap.target <- sum(index.wts^2)

The bounds you use might, for example, be 95% and 105% of the target.

Mixing Numerical and Categorical Constraints

There is one tricky part when you have both numerical and categorical linear
constraints. Up until now we have used a matrix (or a vector) as the first
argument to build.constraints. A matrix has to have all of its elements of
the same type, but now we want a mix of types: numeric for the numerical
constraints, and character, logical or factor for the categorical constraints. Now
we need to use a data frame, not a matrix, to represent our constraint data.

> cons.objmix <- build.constraints(data.frame(Risk1=beta1,

+ Risk2=beta2, Country=country))

> head(cons.objmix$lin.constraints)

Risk1 Risk2 Country

stockA 1.3119461 0.8972907 Australia

stockB 0.9886379 0.9784834 Singapore

stockC 1.1688637 0.7135961 Japan

stockD 0.8160228 1.1195767 Australia

stockE 1.0312180 1.0847337 Japan

stockF 1.2067453 1.0977745 Australia

> cons.objmix$bounds

lower upper

Risk1 -Inf Inf

Risk2 -Inf Inf

Country : Australia -Inf Inf

Country : Japan -Inf Inf

Country : Singapore -Inf Inf

Yet again the next step is to specify the bounds and then use the arguments.

Portfolio Constraints versus Trade Constraints

The default behavior is to constrain the portfolio. If you want the trade to
be constrained rather than the portfolio, then set the lin.trade argument to
TRUE. You can have a mixture of constraints on the trade and on the portfolio.
The vector given as lin.trade is replicated to have length equal to the number
of columns in the lin.constraint object.

If lin.constraints has three columns, then the argument:

lin.trade = c(TRUE, FALSE, TRUE)

means that the constraint in the first column is on the trade, the second column
constrains the portfolio and the third column constrains the trade.

3.8. LINEAR CONSTRAINTS 49

Net Constraints versus Gross Constraints

By default, constraints use the sum of the absolute value of weights or value or
counts. If you want the constraints on the net rather than the gross, then set
the lin.abs argument to be FALSE. For the variance partition styles, lin.abs
must be TRUE (the default value switched in version 1.04 because of this).

For example, in a long-short portfolio you may want to limit the net weight
in a sector, but you may also want to limit the gross amount in the sector.

The lin.abs argument is replicated to have length equal to the number of
columns in the lin.constraint object.

As with similar arguments, lin.abs can be a vector:

lin.abs = c(TRUE, TRUE, FALSE)

Let’s look at the four possible combinations of the values of lin.trade and
lin.abs. These are:

• portfolio, gross (absolute) (the default)

• portfolio, net (not absolute)

• trade, gross (absolute)

• trade, net (not absolute)

For long-only portfolios the first two are the same since all positions are positive.

An extreme example is to enforce all four types on the same constraint. You
want to name the constraints properly so that you can keep track of them:

> con.4c <- build.constraints(cbind(c.tn=countryvec,

+ c.ta=countryvec, c.pn=countryvec, c.pa=countryvec))

The result of the above command can then be used like:

lin.constraints = con.4c$lin.constraints,

lin.trade = c(TRUE,TRUE,FALSE,FALSE),

lin.abs = c(FALSE,TRUE))

The lin.abs argument will automatically be replicated to be: FALSE, TRUE,
FALSE, TRUE. Of course we could have given all four values.

Long-side Constraints and Short-side Constraints

This section is mainly for long-short portfolios, in which it applies to both trade
constraints and portfolio constraints.

For long-only portfolios it can apply to trade constraints. In general, it does
not apply to portfolio constraints, but there is a catch with variance partition
constraints as described below.

50 CHAPTER 3. CONSTRAINTS

A long-side constraint only involves assets that have long positions—the
short positions are effectively treated as zero for the purposes of the constraint.
Likewise, a short-side constraint only looks at assets with short positions.

The lin.direction argument controls whether you have a long-side, short-
side or both-side constraint.

There are three possible values:

• lin.direction = 0 means both-sides (the default)

• lin.direction = 1 means long-side

• lin.direction = -1 means short-side

Of course, lin.direction gets replicated to be as long as the number of columns
in the lin.constraints object, and can be given as a vector:

lin.direction = c(1, -1, 0, 0)

When a short-side constraint is in effect (lin.direction=-1), then it is the
absolute value of the short values that is used—your constraints should be non-
negative.

With the weight, value and count styles an asset not in the portfolio (or
trade) is always zero. However, assets not in the portfolio can have a non-zero
contribution to the variance. So a variance partition constraint can be different
for a long-only portfolio when lin.direction is 1 rather than 0.

Looking at the Effect of the Constraints

The constraints.realized function displays the status of linear constraints
for a portfolio. This function produces the con.realized component of objects
returned by trade.optimizer. This component is not a part of the printing
of the object, but is a part of the summary. (Using summary can give you
information on some of the other constraints as well.) Here is an example:

> opti2$con.realized

$linear

lower upper realized nearest violation

c.tn : France -3e+05 -2e+05 -296632 -3368 NA

c.tn : Italy 1e+05 2e+05 180767 19233 NA

c.tn : Spain -1e+05 -3e+04 -75494 -24506 NA

c.ta : France 6e+05 7e+05 600624 -624 NA

c.ta : Italy 2e+05 3e+05 206917 -6917 NA

c.ta : Spain 4e+05 5e+05 399552 NA -448

c.pn : France -1e+05 0e+00 -24099 24099 NA

c.pn : Italy 0e+00 1e+05 92422 7578 NA

c.pn : Spain -1e+05 0e+00 -76340 -23660 NA

c.pa : France 3e+05 4e+05 394621 5379 NA

c.pa : Italy 3e+05 4e+05 304686 -4686 NA

c.pa : Spain 3e+05 4e+05 400398 NA 398

3.8. LINEAR CONSTRAINTS 51

This contains a matrix where each row has information on a sub-constraint.
The final column indicates the size of violations—if all of the elements in this
column are NA, then there are no violations. A negative violation means that
the realized value is below the lower bound, and a positive violation means that
the realized value is above the upper bound. The next to last column gives
proximity of the realized value to the nearest bound (if there is not a violation).
The same convention in terms of sign is used—a negative number means the
realized is closer to the lower bound. The last two columns have exactly one
missing value for each row.

In this example the sizes of the violations are relatively trivial. However,
they would not be trivial in terms of their affect on the objective if you were
optimizing—any violation means that the optimizer has been concentrating on
getting a feasible solution (a solution that merely satisfies the constraints) and
may not be near the best feasible solution. At times there is a non-zero penalty
that is of trivial size relative to the utility, you need not worry in such cases.

Evaluating Un-imposed Constraints

It is possible to look at the value of constraints that were not imposed on a
portfolio. Give constraints.realized the portfolio object (the result of a call
to trade.optimizer) and the constraints (as a matrix or data frame) that are
of interest:

> constraints.realized(opt.ir2, cbind(country=countryvec))

lower upper realized nearest violation

country : France -Inf Inf 0.020106 -Inf NA

country : Italy -Inf Inf 0.156728 -Inf NA

country : Spain -Inf Inf -0.157020 -Inf NA

You may also use the additional linear constraint arguments like lin.abs and
lin.trade to specify the nature of the constraints you want:

> constraints.realized(opt.ir2, cbind(country=countryvec),

+ lin.abs=TRUE, lin.style="value")

lower upper realized nearest violation

country : France -Inf Inf 433494 -Inf NA

country : Italy -Inf Inf 296702 -Inf NA

country : Spain -Inf Inf 669666 -Inf NA

Inspecting Linear Constraints

The summary for portfolios includes the result of constraints.realized on the
portfolio as well as listing the effective values of the arguments that control the
type of constraints. If you are doing optimization, you can get this with:

opt.obj <- trade.optimizer(...)

summary(opt.obj)

If you are generating random portfolios, you can do:

52 CHAPTER 3. CONSTRAINTS

rp.obj <- random.portfolio(...)

randport.eval(rp.obj, subset=1, FUN=summary)

Setting the subset argument to 1 means that we are only going to evaluate the
first random portfolio.

An example for random portfolios is:

> tail(randport.eval(rp.obj6, FUN=summary,

+ subset=1)[[1]], 1)

$constraints.realized

$constraints.realized$linear

lower upper realized nearest violation

Country : France -300 0 -28.09 28.09 NA

Country : Germany 0 100 27.57 -27.57 NA

Country : UK 100 2000 175.39 -75.39 NA

An example for optimization is:

> tail(summary(op.obj6), 1)

$constraints.realized

$constraints.realized$linear

lower upper realized nearest violation

Cntry : France -300.0 0.00 -297.6500 -2.350e+00 NA

Cntry : Germany 0.0 100.00 11.4600 -1.146e+01 NA

Cntry : UK 100.0 2000.00 782.1500 -6.822e+02 NA

Beta 0.9 0.95 0.9001 -1.060e-04 NA

3.9 Count Constraints

This section continues the description of arguments:

• lin.constraints

• lin.bounds

• lin.trade

• lin.abs

• lin.style

• lin.direction

but with the restriction that lin.style="count".

When lin.style is "count", then count constraints—user-defined integer
constraints— are produced. This can only be used with a categorical column
of lin.constraints—a count constraint on a numerical column will trigger an
error.

Let’s consider some examples.

Suppose that we have a long-short portfolio and we want an equal number of
long positions and short positions from the UK, and we want one more French
long position than French short position. We have no preference regarding
Germany. Then we would create a bounds object like:

3.9. COUNT CONSTRAINTS 53

> lbc1

lower upper

Country : France 0.5 1.5

Country : Germany -Inf Inf

Country : UK -0.5 0.5

Our call would then include the arguments:

lin.bounds = lbc1, lin.style = "count", lin.abs = FALSE

We can accept the default value of lin.trade because we want a constraint on
the portfolio. We can infer from the bounds object that the lin.constraints

argument contains just one constraint that is called Country.
Notice that in this context (lin.abs = FALSE, lin.direction = 0) long

positions count as one but short positions count as negative one. Also notice
that we are giving bounds that are between integers—you don’t want to give
bounds for count constraints that are integer.

Now suppose that we want exactly one German position in the portfolio and
we want one or two French positions. Our bounds object should now look like:

> lbc2

lower upper

Country : France 0.5 2.5

Country : Germany 0.5 1.5

Country : UK -Inf Inf

We would have arguments:

lin.bounds = lbc2, lin.style = "count", lin.abs = TRUE

If we want exactly two long UK positions and we want no short French positions,
then we need to do a bit more work. The extra work is because we now have
two constraints (a long-side constraint and a short-side constraint) so we need
two columns in lin.constraints, not the one column that we have been using.
We start by building the appropriate object:

> lcc3 <- build.constraints(cbind(Country.longc=countryvec,

+ Country.shortc=countryvec))

Now we get the bounds matrix that we need:

> lbc3 <- lcc3$bounds

> # lbc3

> lbc3[3,] <- c(1.5, 2.5)

> lbc3[4, 2] <- .5

> lbc3

lower upper

Country.longc : France -Inf Inf

Country.longc : Germany -Inf Inf

Country.longc : UK 1.5 2.5

Country.shortc : France -Inf 0.5

Country.shortc : Germany -Inf Inf

Country.shortc : UK -Inf Inf

54 CHAPTER 3. CONSTRAINTS

Now we’ll use arguments:

lin.constraints = lcc3$lin.constraints, lin.bounds = lbc3,

lin.style = "count", lin.direction = c(1, -1)

Logical values are allowed to define constraints. Logicals are probably most
likely to be used in count constraints. Here we have a somewhat contrived
example (as if the others aren’t) where we want to lower the beta of the portfolio.
We lower beta if we sell high beta stocks or buy low beta stocks. We’ll create a
constraint that does more of this than its opposite in terms of asset count. We
build the constraint object and the bounds:

> lcc4 <- build.constraints(cbind(HighBeta = beta > 1)

> lbc4 <- lcc4$bounds

> lbc4[1,1] <- 3.5

> lbc4

lower upper

HighBeta : FALSE 3.5 Inf

HighBeta : TRUE -Inf Inf

Our arguments are:

lin.constraints = lcc4$lin.constraints, lin.bounds = lbc4,

lin.style = "count", lin.trade = TRUE

You might want to constrain the number of assets that are long and/or short in
the portfolio. You can do that by creating a categorical variable with only one
level. One approach is to use TRUE as the level.

> assets <- rep(TRUE, length(prices))

> names(assets) <- names(prices)

> assetcon1 <- build.constraints(cbind(assets=assets))

> assetcon1$bounds[] <- c(23.5, 30.5)

In the code above we have set up the constraints so that the count can be 24 to
30, inclusive (the bounds should be away from integers for count constraints).
To impose a constraint on the number long, we would use this like:

lin.bounds=assetcon1$bounds, lin.direction=1

To constrain the number of positions both long and short, we could set it up
like:

> assetcon2 <- build.constraints(cbind(nlong=assets,

+ nshort=assets))

> assetcon2$bounds[1,] <- c(23.5, 30.5)

> assetcon2$bounds[2,] <- c(19.5, 25.5)

and then use it like:

lin.bounds=assetcon2$bounds, lin.direction=c(1,-1)

3.10. ALPHA (EXPECTED RETURN) CONSTRAINTS 55

3.10 Alpha (Expected Return) Constraints

This section describes the argument:

• alpha.constraint

The alpha.constraint argument bounds the expected return of the optimized
portfolio. In its simplest use, it is merely a single number that gives the mini-
mum for the expected return. For example:

alpha.constraint = 1.1

An upper bound as well as a lower bound can be specified by giving a two-
column matrix. For instance:

alpha.constraint = cbind(1.1, 2.3)

will restrict the expected return to be between 1.1 and 2.3.
Note that if a benchmark is given, then this will constrain the expected

return relative to the benchmark. This is just the usual expected return of the
portfolio minus the expected return of the benchmark.

Advanced use of alpha.constraint (chiefly when more than one vector of
expected returns is given) is discussed on page 129.

3.11 Variance Constraints

This section discusses the argument:

• var.constraint

The var.constraint argument constrains the value of the variance. In its most
common usage, it is merely a number giving the upper bound for the variance.
Using the argument:

var.constraint = 1.4

imposes an upper bound of 1.4 on the variance.
The next most common usage is a two column matrix that gives a range of

values that the variance is allowed to be in. For example:

var.constraint = cbind(1.2, 1.4)

says that the variance is to be at least 1.2 but no more than 1.4. The value
given looks like:

> cbind(1.2, 1.4)

[,1] [,2]

[1,] 1.2 1.4

More advanced use of this argument—predominantly when multiple variances
are given—is discussed on page 127.

56 CHAPTER 3. CONSTRAINTS

3.12 Tracking Error (Benchmark) Constraints

This section discusses the argument:

• bench.constraint

The bench.constraint argument is used to constrain (squared) tracking errors.
There has to be information on not only the numerical bound that you want,
but the benchmark as well. The benchmark needs to be an asset in the variance,
but it doesn’t need to be in the prices unless benchmark trading is allowed.

Ultimately bench.constraint creates a variance constraint—it is just a
more convenient way of specifying some commonly desired constraints.

Single Upper Bound

If you want just an upper bound, then give a named numeric vector of length
one. For example:

bench.constraint = c(spx = .04^2)

specifies a 4% tracking error from spx.
Another way of doing the same thing is:

> bc <- .04 ^ 2

> names(bc) <- "spx"

> bc

spx

0.0016

and then use the argument:

bench.constraint = bc

Scaling

Don’t forget that this constraint is on squared tracking error, not tracking error.
While tracking errors are almost always an annual number, your data prob-

ably aren’t annual. For example if your variance is on a daily scale, then you
need to transform the constraint to the daily scale:

bench.constraint = c(spx = .04^2 / 252)

Lower and Upper Bounds

Lower bounds as well as upper bounds can be specified by giving a two-column
matrix. For example:

bench.constraint = rbind(spx=c(.02, .04)^2)

would restrict spx tracking error to between 2% and 4%.
This is most likely of interest when generating random portfolios.

3.13. DISTANCE 57

Multiple Benchmarks

If you want upper bounds on more than one benchmark, merely give a numeric
vector with the names of the benchmarks:

bench.constraint = c(spx = .04^2, R1000 = .05^2)

specifies no more than a 4% tracking error from spx and also no more than a
5% tracking error from R1000.

To get both upper and lower constraints for multiple benchmarks, you give
a two-column matrix with multiple rows. For example:

bench.constraint = mult.benchcon.lowup

where

> mult.benchcon.lowup

[,1] [,2]

spx 0.0004 0.0016

R1000 0.0009 0.0025

R2000 0.0016 0.0064

Advanced Use

When there are multiple variance matrices, then specifying benchmark con-
straints is more complicated. This is discussed on page 127.

3.13 Distance

This section discusses the arguments:

• dist.center

• dist.style

• dist.bounds

• dist.trade

• dist.utility

• dist.prices

These arguments impose distance constraints.

Let’s start with a simple example. Suppose we have a target portfolio that
has the following weights:

> targwt <- c(Asset1=.4, Asset2=.3, Asset3=.2, Asset4=.1)

58 CHAPTER 3. CONSTRAINTS

Suppose we want the resulting portfolio to have weight distance no more than
0.5 (so the buys plus sells of the trade to get from the result to the target
would be no more than 50% of the gross value of the portfolio). To impose that
constraint we would use arguments:

dist.center=targwt, dist.style="weight", dist.bounds=.5

The example above computes distance as the difference in weights. The distance
can alternatively be computed as the difference in monetary values. These two
are equivalent if the gross value is constrained to a narrow range (although the
weight formulation takes slightly more time to compute). However, if the gross
value is allowed a wide range, then there is a difference: the value distance
will favor a gross value close to the gross value of the target portfolio while the
weight distance will be indifferent to the gross value.

For a value distance, you can give either the values of the assets in the target
portfolio or the shares in the target portfolio. Using value might look like:

dist.center=target.values, dist.style="value",

dist.bounds=25000

while using shares might look like:

dist.center=target.shares, dist.style="shares",

dist.bounds=25000

The dist.trade argument takes a logical vector and allows you to constrain
the distance of the trade rather than the portfolio.

The dist.utility argument also takes a logical vector—TRUE values of this
imply that you want to use it as the objective in optimization. For more on
this, see Section 5.4.

Alternative prices

By default, distance is defined by the prices vector. You don’t have to define
it that way. You can include a value for dist.prices that gives different prices
to be used in the computations of distances. The dist.style argument takes
a value with “custom” before the style when you want to use the dist.prices

values. For example, you might have:

dist.center=target.shares, dist.style="customshares",

dist.prices=some.price.vector, dist.bounds=35000

Multiple distances

It is possible to have more than one distance constraint. In this case the
dist.center argument needs to be a list. For example, you might have ar-
guments that look like:

dist.center=list(target1.wt, target2.share, target3.wt),

dist.style=c("weight", "shares", "weight"),

dist.bounds=c(0.2, 2e5, 0.3)

3.14. SUMS OF LARGEST WEIGHTS 59

Here we have three distances declared—the first and third in terms of weight
and the second in terms of shares.

If you want lower bounds as well as upper bounds on the distances, then you
need to give dist.bounds a two-column matrix with each row corresponding to
a distance. For example:

dist.bounds=cbind(c(0.1, 1e5, 0.2), c(0.2, 2e5, 0.3))

Each of the arguments dist.style, dist.trade and dist.utility can either
have length equal to the number of distances, or length one if the argument is
the same for all arguments. For example, in the example above dist.trade

and dist.utility both have their length one default value.
The dist.prices argument can be a list of price vectors to match the

dist.center argument.

3.14 Sums of Largest Weights

This section discusses the argument:

• sum.weight

Consider the constraint that the largest n weights should sum to no more than
some limit—this is handled by the sum.weight argument.

For example if you want the 5 largest weights to sum to no more than 40%,
and the 10 largest weights to sum to no more than 70%, the argument would
look like:

sum.weight = c("5"=.4, "10"=.7))

The values in the vector given to sum.weight are the limits, the names of the
vector are the numbers of weights in the sums.

S code note

The names within the c function must be inside quotes as they are not legal S
object names.

Another way of getting the same thing would be:

> sumw.arg <- c(.4, .7)

> names(sumw.arg) <- c(5, 10)

Then sumw.arg would be given as the sum.weight argument.

The argument:

sum.weight = c("1" = .05)

creates a constraint that says that the largest weight of any one asset is 5%.
This is conceptually exactly the same as:

max.weight = .05

60 CHAPTER 3. CONSTRAINTS

However, there are some operational differences. The key difference is that
using sum.weight ensures that either the constraint is satisfied or there is a
penalty imposed for breaking the penalty. But it will be somewhat slower when
sum.weight is used. See page 32 for the possibility of max.weight failing to
enforce the constraint.

So far only upper bounds have been discussed. It is possible to impose lower
bounds as well as upper bounds. This is done by giving a two-column matrix
where the first column is the lower bound and the second column is the upper
bound. The row names give the number of the largest weights.

A couple examples are:

> rbind(’5’=c(.2, .3))

[,1] [,2]

5 0.2 0.3

> rbind(’5’=c(.2, .3), ’10’=c(.3, .4))

[,1] [,2]

5 0.2 0.3

10 0.3 0.4

Using the first matrix would restrict the sum of the largest 5 weights to be
between 20% and 30%. The second matrix would add the constraint that the
sum of the largest 10 weight have to sum to between 30% and 40%.

3.15 Cost Constraints

This section discusses the argument:

• limit.cost

This is unlikely to be of use with optimization.
limit.cost puts lower and upper constraints on the cost. This can be useful

for mimicking actual trading with random portfolios. If this is given, then it
must be a length two vector giving the allowable range of costs:

limit.cost = c(2.3, 2.35)

or possibly something like:

limit.cost = opt.obj$results["cost"] * c(.99, 1.01)

3.16 Number of Positions to Close

This section discusses the argument:

• close.number

3.17. QUADRATIC CONSTRAINTS 61

The minimum and maximum number of positions to close in the existing port-
folio can be specified with the close.number argument. If a single number is
given, then exactly that number are to be closed.

So:

close.number = 3

is really shorthand for:

close.number = c(3, 3)

Note that this is different than other arguments where a single number does not
imply a lower bound.

To specify that at least 2 positions should be closed, but no more than 3,
then say:

close.number = c(2, 3)

This sort of constraint is unlikely to be useful in optimization, but can be used
to generate random portfolios that match what an actual trade has done.

3.17 Quadratic Constraints

Quadratic constraints on the portfolio are not officially supported, but some can
be imposed. Quadratic constraints on the trade are not possible.

The acceptance of more than one variance means that trade.optimizer and
random.portfolio can be tricked into allowing quadratic constraints on the
portfolio. However, general constraints are not possible – only ones where the
matrix is symmetric (because the algorithm speeds computations by assuming
the variance is symmetric).

Here are the steps for creating quadratic constraints:

• Add the constraint matrices to the variance.

• Specify the constraint bounds.

• Make sure the constraints are not benchmark-relative.

• If doing optimization, tell the optimizer not to include the constraints in
the utility.

Add Constraints to the Variance

Suppose you have a single variance matrix (as per usual) called varian and you
have two quadratic constraint matrices called qmat1 and qmat2. You need to
create a three dimensional array with three slices. This is an easy operation in
the S language, but care needs to be taken that the assets match.

> assetnam <- dimnames(varian)[[1]]

> varian3 <- array(c(varian, qmat1[assetnam, assetnam],

+ qmat2[assetnam, assetnam]), c(dim(varian), 3),

+ c(dimnames(varian), list(NULL)))

62 CHAPTER 3. CONSTRAINTS

S code note

The c function features prominently in this command.
When c is used on matrices, as in its first occurrence in the command, the

dimensions are stripped and the result is a plain vector of all of the elements of
the three matrices.

The c function can be used with lists as well as with atomic vectors. For
the dimnames of the resulting three-dimensional array, we need to have a length
three list where the final component is ignored (and hence can be NULL). In
this case we need all of the arguments to c to be lists, so we need to give it
list(NULL). Just giving an argument of NULL would not have had the effect
that we wanted.

Impose Constraint Bounds

The next step is to impose the constraint bounds. This will be done with the
var.constraint argument as discussed in Section 13.3. The constraints in this
case will be on the second and third variances, that is, on indices 1 and 2. Also
note that the bounds are in terms of the weights—there is not a choice to put
the bounds in terms of monetary value.

If you are generating random portfolios (without a utility constraint) and
you are not using a benchmark, then you can proceed to the actual computation.
The intervening steps only apply if you are using a benchmark or a utility.

Dummy Run

The next two steps are aided by performing a dummy run of optimization—
something like:

> qc.temp <- trade.optimizer(prices, varian3,

+ iterations=0, ...)

It is best to include the variance constraints in this run—without them the step
regarding benchmarks can go wrong. When iterations.max is set to zero, then
a minimal amount of optimization is performed. You will get a warning that
this is not the same as no optimization. We don’t care about optimization in
this instance, we only care about the setup for optimization.

Check for Benchmark

If you are not using a benchmark, you don’t need to be concerned with this
step.

If you are using a benchmark, then the default behavior makes the variances
relative to the benchmark. This is seen in the vtable component of the output
of our dummy run.

> qc.temp$vtable

[,1] [,2] [,3]

variance 0 1 2

3.17. QUADRATIC CONSTRAINTS 63

benchmark 500 500 500

utility.only 1 0 0

attr(,"benchmarks")

[1] "spx" "spx" "spx"

In our example we want the last two columns to not have a benchmark. Hence
we would do an operation like:

> qcvtab <- qc.temp$vtable

> attr(qcvtab, "benchmarks") <- c("spx", "", "")

If you are generating random portfolios and you didn’t include the variance con-
straints in the dummy run, then you will also want to change the utility.only
row to be zero in the columns that pertain to your constraints. The argument:

vtable = qcvtab

should be given in the actual computation.
You can learn more about the vtable argument on page 126.

Constraints out of Utility

This step does not pertain to random portfolios (unless a utility constraint is
used).

This step tells the optimizer that the final two “variances” are not to be
used in the utility. We do this by modifying the utility table from the dummy
run. (Utility tables are discussed on page 131.)

> qc.utiltab <- qc.temp$utable

> qc.utiltab

[,1] [,2] [,3]

alpha.spot 0 0 0

variance.spot 0 1 2

destination 0 1 2

opt.objective 1 1 1

risk.aversion 1 1 1

wt.in.destination 1 1 1

> qc.utiltab[’destination’,] <- c(0, -1, -1)

> qc.utiltab

[,1] [,2] [,3]

alpha.spot 0 0 0

variance.spot 0 1 2

destination 0 -1 -1

opt.objective 1 1 1

risk.aversion 1 1 1

wt.in.destination 1 1 1

Actual Computation

Now we are ready for the actual computation. If we are generating random
portfolios, we’ll have a command like:

64 CHAPTER 3. CONSTRAINTS

> qc.rp <- random.portfolio(100, prices, varian3,

+ vtable = qcvtab, var.con = ...)

Alternatively, if we are optimizing, we’d do something like:

> qc.opt <- trade.optimizer(prices, varian3,

+ vtable = qcvtab, utable = qc.utiltab, var.con = ...)

3.18 Constraint Penalties and Soft Constraints

This section applies only to optimization—it can not apply to generating random
portfolios.

Virtually all of the constraints are enforced via penalties. That is, instead
of the optimization algorithm minimizing the negative utility, it minimizes the
negative utility plus penalties for whatever constraints are violated. Solutions
that obey all of the constraints experience no penalties.

The algorithm actively attempts to satisfy some of the constraints—in par-
ticular the constraints on the monetary value of portfolios are closely managed,
as are threshold constraints, and the constraint on the maximum number of
assets traded is always obeyed.

Tools are available in trade.optimizer to allow you to adjust the penalties
so that most of the constraints (those not actively managed) can become soft
constraints. This is done by making the penalties for those constraints small
enough so that there will be a trade-off between the penalty for the constraint
and the utility.

Consider an example:

> soft.op1$violated

[1] "variance" "linear" "gross value"

attr(,"linear violations")

[1] "Country" "Sector"

There are violations of two linear constraints, the variance constraint, and the
gross value.

The default value of the penalty.constraint argument is 1000. You can
change individual elements of the penalty by giving the penalty.constraint

argument a named vector where the names are the items for which you want
to change the penalty. You need to give the names exactly—they can not
be abbreviated. The easiest approach is to change the penalty.constraint

component of the output from the original optimization.

> softpen2 <- soft.op1$penalty.constraint

> softpen2[1:2] <- .1

> soft.op2 <- update(soft.op1, penalty.constraint=softpen2)

Chapter 4

Valuation of Portfolios

In addition to generating random portfolios and optimizing trades, the third
major computational task in Portfolio Probe is the valuation of portfolios.

The valuation function is generic and has three methods:

• the default method takes a named numeric vector representing the port-
folio, and it requires prices to be given.

• There is a method for results from trade.optimizer. This will use the
prices in the original call if prices are not given.

• There is a method for random portfolios; this requires prices to be given.

4.1 Single Portfolio

A single portfolio is valued via the default valuation method. The method
for optimization objects mostly just does the same thing as the default. This
section covers both these cases.

If opti is the result of trade.optimizer, you get valuation of the portfolio
with the first command below, and of the trade with the second:

> valuation(opti)

> valuation(opti, trade=TRUE)

The default behavior of valuation when given an optimization object is to give
information on the portfolio. The trade can be examined instead by setting the
trade argument to TRUE.

When valuation is given a vector (and hence the default method is used),
prices must be given:

> valuation(opti$trade, price=new.prices)

Prices are optional when optimization objects are given—the default is the prices
used during the optimization.

65

66 CHAPTER 4. VALUATION OF PORTFOLIOS

Summary Statistics

By default several pieces of information are given in the result of a valuation

call. For instance:

> valuation(opti)

$individual

D E

28.95 9970.40

$total

gross net long short

9999.35 9999.35 9999.35 0.00

$weight

D E

0.002895188 0.997104812

$timestamp

[1] "Mon Feb 20 18:35:36 2012"

$call

valuation.portfolBurSt(x = opti)

One way to get the gross value of the portfolio is:

> valuation(opti)$total["gross"]

Another way is:

> valuation(opti, collapse=TRUE, type="gross")

Weights

You can get the asset weights by extracting the weight component:

> valuation(opti)$weight

D E

0.002895188 0.997104812

This effectively drops zero weights from the universe. Often we want the weight
vector to correspond to the full universe. The all.assets argument gets us
that:

> round(valuation(opti, the.pri, all.assets=TRUE)$weight, 4)

A B C D E F

0.0000 0.0000 0.0000 0.0029 0.9971 0.0000

The assets in the resulting weight vector will be in the same order as the assets
in the prices vector. Notice that it is useless to specify all.assets=TRUE and
not give prices since the prices in an optimization object are only a selection
of the universe.

4.2. RANDOM PORTFOLIOS 67

Collapsing Values

So far we have presumed that prices is just a vector of the prices at one time.
But prices in valuation can be:

• a vector — prices of the assets at a specific time

• a matrix — rows corresponding to different times, columns corresponding
to different assets

• a 3-dimensional array — rows corresponding to different times, columns
corresponding to different assets, slices corresponding to different scenarios

If prices is a matrix or an array, then collapse can not be FALSE. (See Section
4.4 for values of collapse other than TRUE and FALSE.)

The type argument comes into play when collapse is not FALSE. The pos-
sible values of type are:

• "gross" — the gross value

• "net" — the net value

• "long" — the value of the long positions

• "short" — the value of the short positions (a positive number)

• "nav" — the net asset value (which includes cash)

• "cash" — the value(s) computed for cash

The net asset value is the net value plus the supporting cash. If the cash

argument is not given, then cash is computed to be the gross value minus the net
value (at the first time point). So the cash of a long-only portfolio is computed
to be zero, and the cash of a dollar neutral portfolio defaults to the gross value.

It is possible to have a command on the order of:

> valuation(opti, collapse=TRUE, type="gross", weight=TRUE)

In this case it is a long way around to get to 1. However, if type were one of the
other possibilities and the portfolio were long-short, then it could be of interest.

4.2 Random Portfolios

Valuation of random portfolios is very similar to that for single portfolios, but
there are a few differences. Specifically the random portfolio method gives
valuations for multiple portfolios, not just one.

68 CHAPTER 4. VALUATION OF PORTFOLIOS

When collapse is FALSE

When collapse is FALSE, then the result is a list that contains the valuation
or weights of the assets in the portfolios. Each component corresponds to one
of the random portfolios.

The single portfolio methods also return a list in this case, but that is a list
with multiple components for the one portfolio.

The prices argument is allowed to be a matrix in this case for random
portfolios (but it is not currently allowed to be three-dimensional). For the
single portfolio methods prices can only be a vector when collapse is FALSE.

When collapse is not FALSE

When collapse is TRUE, then the result is an object much like the prices

that is input. The difference is that random portfolios replace the assets. So if
prices is a matrix of times by assets, then the result will be a matrix of times
by random portfolios.

See Section 4.4 for the remaining possibility for collapse.

4.3 Compute Returns

In addition to returning monetary values or weights, it is also possible to return
returns. This requires that there be prices for more than one time period—that
is, that prices be a matrix or three-dimensional array.

When the returns argument is NULL, then values or weights are returned
(depending on the weight argument). The other possible values of returns

are:

• "simple"

• "log"

• "arithmetic"

• "geometric"

This is not four different types of returns, this is two types of returns that each
have two names. The result will be an object similar to what would be returned
if valuations were asked for, but it will have one less time point.

If returns are requested, then collapse=FALSE and weight=TRUE are over-
ridden. Also type is set to "nav".

4.4 Collapse into Categories

There is a half-way case of collapsing, which is to collapse into categories of
assets.

All of the possible values of collapse are:

• FALSE

• TRUE

4.5. SUMMARY 69

• a named character vector

• a named factor

• a list of named character vectors and/or named factors

• a data frame of character and/or factor columns where the row names of
the data frame are the asset identifiers

The names on the character vectors or factors are the asset identifiers. In the
example where asset identifiers are single uppercase letters, such a character
vector might be:

> sector.char

A B C D E F

"Retail" "Retail" "Energy" "Energy" "Mining" "Media"

There is no problem having assets in the category objects that are not used.
A list of categories is used in order to get combinations of the categories.

For example if we had:

collapse = list(sector.char, country.factor)

Then we would end up with categories like "Retail.UK" and "Media.France".

If prices is a vector, then the result for single portfolios will be a vector
corresponding to categories, and the result for random portfolios will be a matrix
that is categories by random portfolios.

If prices is a matrix, then the result for single portfolios will be a ma-
trix that is time by categories, and for random portfolios it will be a three-
dimensional array that is time by categories by random portfolios. Note that it
is valid to ask for returns in this case.

Computations with categories and three-dimensional prices are not cur-
rently implemented.

4.5 Summary

Table 4.1 summarizes the use of valuation. The codes for prices are: v for
vector, m for matrix and 3 for three-dimensional array. The codes used for the
results are explained in Table 4.2. A star (*) means any allowable input for that
particular argument.

70 CHAPTER 4. VALUATION OF PORTFOLIOS

Table 4.1: Summary of possibilities with valuation.

portfolio prices collapse weight returns result

single v F * NULL list of info
single * T F NULL pval(0D/1D/2D)
single * T T NULL pwt(0D/1D/2D)
single m, 3 F, T * string pret(1D/2D)
single v, m categ F NULL cval(1D/2D)
single v, m categ T NULL cwt(1D/2D)
single m categ * string cret(2D)
random v, m F F NULL list of aval(1D/2D)
random v, m F T NULL list of awt(1D/2D)
random v, m, 3 T F NULL pval(1D/2D/3D)
random v, m, 3 T T NULL pwt(1D/2D/3D)
random m, 3 F, T * string pret(2D/3D)
random v, m categ F NULL cval(2D/3D)
random v, m categ T NULL cwt(2D/3D)
random m categ * string cret(3D)
random 3 F * NULL Error
single m, 3 F * NULL Error

* v * * string Error
* 3 categ * * Error

Table 4.2: Explanation of the “results” column in Table 4.1.

code explanation

aval asset valuation
awt asset weight
pval portfolio valuation
pwt portfolio weight
pret portfolio return
cval category valuation
cwt category weight
cret category return

Chapter 5

Optimizing Long-Only
Portfolios

This chapter discusses commands for optimizing long-only portfolios. It applies
to both active and passive portfolios.

The examples in this chapter are just sketches of what you are likely to
want to do in practice. Chapter 3 discusses all the constraints that may be
imposed. Some of the examples limit the number of assets that are held in the
portfolio or traded. These limits are convenient, but threshold constraints (page
37) may be better to use. Chapter 8 covers trading costs—it is usually a good
idea to constrain trading in some way, whether with trading costs or a turnover
constraint.

5.1 Required Inputs

The trade.optimizer function needs a price vector. The prices argument
needs to be a vector of prices with names that are the asset names. The assets
in prices control the assets that are used in the problem. Other inputs—such
as the variance and linear constraints—may contain additional assets (which
will be ignored).

Other than prices there is no single argument that is required. However,
there are two concepts that are required: the amount of money in the portfolio
has to be constrained somehow, and there has to be something that provides a
utility.

Monetary Value

The turnover or the amount of money in the portfolio needs to be constrained.
Details can be found on page 27

Utility

At least one of the arguments:

• variance

71

72 CHAPTER 5. OPTIMIZING LONG-ONLY PORTFOLIOS

• expected.return

• dist.center

must be given.

Utility-free optimization—minimizing the distance to a target portfolio—can
be done using dist.center and related arguments. See Section 5.4 to do this.

Assuming distance is out of the picture: If expected.return is not given,
then the utility is the minimum variance. If a variance matrix is not given, then
the utility is the maximum expected return. If both are given, then the default
utility is to maximize the information ratio. It can be safest to explicitly state
the utility that you want.

Optimizing a long-only portfolio without a variance or a distance is very
unlikely to be a good idea.

5.2 Examples for Passive Portfolios

This section contains some examples that build in complexity. Expected returns
do not enter into optimization for passive portfolios, and they need not be given.

Minimize the Variance of the Portfolio

This is the simplest optimization to perform:

> op.mv1 <- trade.optimizer(prices, varian,

+ utility = "minimum variance",

+ long.only=TRUE, gross.value=1.4e6)

The amount put into the portfolio is 1.4 million currency units. The simplicity
of this command means that it may not do what you want since it is dependent
on default values for most arguments.

Minimize Tracking Error

We can minimize the variance relative to a benchmark—that is, minimize track-
ing error. To be concrete, let’s assume that the benchmark is the S&P 500 with
the asset name of "spx".

The benchmark need not be in the price vector unless trading the benchmark
is allowed (via the bench.trade argument).

A simple version of minimizing the tracking error is:

> op.te1 <- trade.optimizer(prices, varian,

+ utility = "minimum variance",

+ long.only=TRUE, gross.value=1.4e6, benchmark="spx",

+ bench.weights=list(spx=spx.wts))

The bench.weights argument is used to add the benchmark to the variance
(see page 92 for more details). It is not necessary if the benchmark is already
incorporated into the variance.

This is almost surely too simple.
For example, you may want to limit the number of assets in the portfolio:

5.2. EXAMPLES FOR PASSIVE PORTFOLIOS 73

> op.te2 <- trade.optimizer(prices, varian,

+ utility = "minimum variance",

+ long.only=TRUE, gross.value=1.4e6, benchmark="spx",

+ port.size=55, max.weight=0.05,

+ bench.weights=list(spx=spx.wts))

The op.te2 object represents a portfolio containing up to 55 assets that (ap-
proximately) minimizes the tracking error among all portfolios of size 55 in
which assets have a maximum weight of 5%.

Constraining the maximum weight is really a proxy for constraining risk. We
can do this directly with the risk.fraction argument (see page 33 for details).

> op.te3 <- trade.optimizer(prices, varian,

+ utility = "minimum variance",

+ long.only=TRUE, gross.value=1.4e6, benchmark="spx",

+ port.size=55, risk.fraction=0.05,

+ bench.weights=list(spx=spx.wts))

In this case the bench.weights argument is necessary even if the benchmark is
in the variance – the risk fraction computation requires the benchmark weights.

If you are rebalancing an existing portfolio rather than creating a new one,
then the command might be:

> op.te4 <- trade.optimizer(prices, varian,

+ utility = "minimum variance",

+ long.only=TRUE, gross.val=1.4e6, benchmark="spx",

+ risk.fraction=0.05, existing=cur.port, ntrade=20,

+ bench.weights=list(spx=spx.wts))

The command creating op.te4 is allowing up to 20 assets to be traded. It does
not control the turnover, nor the number of assets in the resulting portfolio.
Thus op.te4 can potentially have up to 75 assets in it if the current portfolio
contains 55 assets. Suppose that we want to have a portfolio with 45 to 55
assets in it, and we want to hold the turnover to 100,000 (currency units, e.g.,
dollars). The following command will provide that:

> op.te5 <- trade.optimizer(prices, varian,

+ utility = "minimum variance",

+ long.only=TRUE, gross.value=1.4e6, benchmark="spx",

+ risk.fraction=0.05, existing=cur.port, turnover=1e5,

+ port.size=c(45,55), bench.weights=list(spx=spx.wts))

This command is a realistic possibility.
The examples above could have been done without specifying the utility

argument—since there are no expected returns, the utility would default to
minimum variance (but you would get a warning stating that utility was being
modified).

See page 78 for examples of dealing with cash flow. Page 132 has an ex-
ample of minimizing against dual benchmarks—for example, when you have a
prediction of the benchmark after an upcoming rebalancing.

74 CHAPTER 5. OPTIMIZING LONG-ONLY PORTFOLIOS

5.3 Examples for Active Portfolios

Expected returns of the assets are required for optimization of active portfolios.
(This is not absolutely true—see page 77 for an example.) Additionally, there
needs to be a decision on how to balance expected return with risk.

Maximize the Information Ratio

The default optimization that involves both expected returns and variance is
to maximize the information ratio. The information ratio of a portfolio is the
expected return of the portfolio divided by the standard deviation of the port-
folio. (The standard deviation is the square root of the variance.) This is a
natural quantity (in mean-variance land) to maximize—we’re seeking the best
risk-adjusted return.

A command to maximize the information ratio is:

> op.ir1 <- trade.optimizer(prices, varian,

+ long.only=TRUE, expected.return=alphas,

+ gross.value=1.4e6)

The alphas object is a vector of expected returns of the assets. When both
variance and expected returns are given, the default objective is to maximize
the information ratio. In this example 1.4 million currency units are put into
the portfolio.

The information ratio is traditionally put into annualized terms. If the
variance and expected returns in your command are not annualized, then you
can annualize the information ratio by multiplying the utility by the square
root of the number that you would use to annualize the variance and expected
returns. For example, for a daily frequency the annualized information ratio
would be:

> -op.ir1$utility.value * sqrt(252)

The negative sign is because the optimizer always minimizes. When quantities
are being maximized (information ratio or utility), then it really minimizes the
negative of the quantity.

Note that this is the information ratio you would get if all of your inputs
were exact. The actual information ratio that you achieve is likely to be worse.

We now turn to the case of maximizing the information ratio when there is
a benchmark involved.

The Information Ratio with a Tracking Error Constraint

It is common to perform a mean-variance optimization relative to the bench-
mark. The risk aversion is adjusted so that the tracking error is near its desired
level. It makes more financial sense to maximize the information ratio in abso-
lute terms (as in the command that created op.ir1) while having a constraint
that the tracking error is no larger than a given value.

The mechanism in trade.optimizer that allows a constraint relative to a
benchmark is the bench.constraintargument. Here is a command to constrain
the tracking error to be no more than 4% while maximizing the information
ratio:

5.3. EXAMPLES FOR ACTIVE PORTFOLIOS 75

> op.ir2 <- trade.optimizer(prices, varian,

+ long.only=TRUE, expected.return=alphas,

+ gross.value=1.4e6, bench.constraint = c(spx=0.04^2/252))

The command above presumes that the benchmark is already included in the
variance matrix. If it isn’t, then the bench.weights argument could be used.
It would be something like:

bench.weights = list(spx=spx.weight.vector)

The value of the bench.constraint argument needs to be named (so that it
knows what benchmark you want) and the value is in the scale of the variance.
Using the c function allows a name to be put on the value.

The 0.04 is squared to transform the tracking error into a variance. This is
then divided by 252 in order to go from the annual value to daily, which is the
frequency of the variance we are assuming in this example. If the variance were
annualized and created from returns in percent, then the bench.constraint

argument would have been:

c(spx=4^2)

note

The benchmark argument is not given in the previous command. If it had
been, then the information ratio that was optimized would be relative to the
benchmark.

A more realistic command might be:

> op.ir3 <- trade.optimizer(prices, varian,

+ long.only=TRUE, expected.return=alphas,

+ gross.value=1.4e6, turnover=1e5, ntrade=15,

+ bench.constraint = c(spx=0.04^2/252),

+ existing=cur.port, port.size=60)

This command includes the existing portfolio, has a limit on the turnover, and
specifies that the final portfolio should contain no more than 60 assets.

You can easily add constraints to other benchmarks as well—just make the
bench.constraint argument longer:

> op.ir4 <- trade.optimizer(prices, varian,

+ long.only=TRUE, expected.return=alphas,

+ gross.value=1.4e6, turnover=1e5, ntrade=15,

+ bench.constraint = c(spx=0.04^2/252, newspx=0.05^2/252),

+ existing=cur.port, port.size=60)

In this example we are constraining the tracking error to be no more than 4%
against the current benchmark, and no more than 5% against our prediction of
the benchmark after it is rebalanced.

Minimizing relative to two or more benchmarks is, however, somewhat more
complicated—that is discussed on page 132. Also a little more complicated is to
get a benchmark-relative utility but a constraint on the portfolio variance—page
134 shows how to do that.

76 CHAPTER 5. OPTIMIZING LONG-ONLY PORTFOLIOS

Maximize Benchmark-relative Information Ratio

If you want the the utility—in this case the information ratio—to be relative to
a benchmark, then you merely need to give the benchmark argument:

> op.ir5 <- trade.optimizer(prices, varian,

+ long.only=TRUE, expected.return=alphas,

+ gross.value=1.4e6, benchmark = "spx")

You get substantially different behavior depending on whether you use benchmark
or bench.constraint:

• bench.constraint does not affect which utility is used.

• benchmark changes the utility.

You can use both—in which case benchmark changes the utility as usual, but
there is also a constraint on the tracking error.

Mean-Variance Optimization

The default objective is to maximize an information ratio (whenever both vari-
ance and expected returns are given). If you want to perform a mean-variance
optimization instead, then you need to specify the utility argument. The
generic mean-variance problem is to maximize the expected return of the port-
folio minus the risk aversion times the variance of the portfolio. Page 123 has
more on the risk aversion parameter.

A command to do a simple mean-variance optimization is:

> op.mv1 <- trade.optimizer(prices, varian,

+ long.only=TRUE, expected.return=alphas,

+ gross.value=1.4e6, utility=’mean-var’, risk.aversion=.7)

This command does not include a benchmark. As noted above, if the benchmark
argument is given, then the mean and variance will be relative to the benchmark.
If you do have a benchmark, an alternative approach is to do the optimization
in the absolute sense and add a constraint on the tracking error. The tracking
error constraint is placed on the optimization with a command like:

> op.mv2 <- trade.optimizer(prices, varian,

+ long.only=TRUE, expected.return=alphas,

+ gross.value=1.4e6, utility=’mean-var’, risk.aversion=.7,

+ bench.constraint = c(spx=0.04^2/252))

For an explanation of the value given for bench.constraint, see page 56.
In mean-variance optimization, the risk aversion parameter is quite impor-

tant.

Mean-Volatility Optimization

Mean-volatility optimization is just like mean-variance optimization except that
the value of the utility argument is:

utility = "mean-volatility"

and the risk.aversion argument will (usually) have a substantially different
value.

5.4. UTILITY-FREE OPTIMIZATION 77

Buy-Hold-Sell List

It is not absolutely necessary to create expected returns for an actively managed
portfolio. Instead you can minimize the variance or tracking error using a list
of assets that can be sold and a list of assets that can be bought.

Suppose that buy.vec and sell.vec are vectors giving the assets that are
allowed to be bought and sold. The first thing to do is to set up the constraints
that make sure nothing on the buy list can be sold, and nothing on the sell list
can be bought.

> lower.tr <- rep(0, length(buy.vec))

> names(lower.tr) <- buy.vec

> upper.tr <- rep(0, length(sell.vec))

> names(upper.tr) <- sell.vec

S code note

These commands create two new vectors containing all zeros and with names
that are the buy assets for one of them, and names that are the sell assets for
the other. The rep function replicates its first argument.

Then these are used in the call to the optimizer. In this case we assume that
we want to minimize tracking error relative to spx.

> op.bhs <- trade.optimizer(prices, varian,

+ long.only=TRUE, gross.value=1.4e6, benchmark="spx",

+ existing=cur.port, lower.trade=lower.tr,

+ upper.trade=upper.tr,

+ universe.trade=c(buy.vec, sell.vec))

The universe.trade argument is restricting the assets that are traded to be
only in the buy or sell list. Assets not named are constrained to not trade.

You may wish to use the turnover argument to constrain turnover, and
other arguments.

5.4 Utility-free Optimization

The idea of utility-free optimization is that you have an ideal target portfolio
and you would like to get as close to that target as possible while still obeying
all of your portfolio constraints. Expected returns are not used for this and you
don’t have to have a variance matrix.

One of the simplest practical possibilities is a call like:

> op.d1 <- trade.optimizer(prices, dist.center=target.wts,

+ utility="distance", existing=current.portfolio,

+ turnover=30000, gross.value=1e6, long.only=TRUE)

The key parts of this call are the dist.center argument that takes a rep-
resentation of the target portfolio, the utility argument, and the turnover

argument. The call is taking advantage of the default value of dist.style

78 CHAPTER 5. OPTIMIZING LONG-ONLY PORTFOLIOS

which is "weight". The target.wts object should be a named numeric vector
that sums to 1, where the names are asset ids.

Some sort of constraint on turnover is almost surely desirable. That could be
accomplished using costs, but the turnover argument is a much easier option.

Another constraint that is quite likely in this setting is a tracking error
constraint. For this we do need a variance and the bench.constraint argument
must be specified.

> op.d2 <- trade.optimizer(prices, dist.center=target.wts,

+ utility="distance", existing=current.portfolio,

+ turnover=30000, gross.value=1e6, long.only=TRUE,

+ variance=varian, bench.constraint=c(spx=0.04^2/252))

In this case we are specifying a maximum tracking error of 4% assuming the
variance was produced with daily data—see Section 3.12 for more details.

The default style of distance (as controlled by the dist.style argument)
is "weight". In this style distance is considered to be the sum of absolute
differences in the weights of the new portfolio and the target portfolio. This is
often how we conceive of distance, but it has the disadvantage that the answer
need not be unique. An option is to add the argument:

dist.style="sumsqwi"

This changes the distance to be the weighted sum of squared differences in
weights, where the weights (for the sum of squares) are the inverse of the weights
for the target portfolio. (Assets not in the target portfolio are ignored in this
formulation of distance.) This form of distance may or may not be more pleasing.

Section 3.13 has more information on the arguments that control distance.

5.5 Managing Cash Flow

When you either are required to raise cash or have cash to put into the portfolio,
you can use optimization to find a good trade. If there is significant cash flow,
then this process has the benefit of keeping the portfolio closer to optimal than
it otherwise would be—thus reducing the need for large, periodic rebalances.
The examples given below assume an active portfolio—merely eliminate the
expected.return argument if yours is passive.

Injecting Money into a Portfolio

If you want to put more money into an existing portfolio, then the main thing
to say is that you don’t want any selling. You probably also want to limit the
number of assets to trade as well. One possible command is:

> op.in1 <- trade.optimizer(prices, varian,

+ long.only=TRUE, expected.return=alphas, turnover=newcash,

+ bench.constraint = c(spx=0.04^2/252),

+ existing=cur.port, ntrade=5, lower.trade=0)

5.6. ASSET ALLOCATION 79

The key features in this command are setting the turnover argument to the
amount of money to be injected, and setting the lower.trade argument to zero.

You may also want to use the port.size argument to restrict the number
of assets in the new portfolio. Alternatively you could set the universe.trade

argument to be the names in the current portfolio—meaning that no additional
assets will be added to the portfolio.

Extracting Money out of a Portfolio

To raise cash from the portfolio, you want the optimizer to do no buying. This
is achieved with the following command:

> op.out1 <- trade.optimizer(prices, varian,

+ long.only=TRUE, expected.return=alphas,

+ turnover=cash.required, ntrade=5,

+ bench.constraint = c(spx=0.04^2/252),

+ existing=cur.port, upper.trade=0)

The pertinent parts of this command are setting the turnover argument to the
amount of cash that is required, and setting upper.trade to zero.

The formulations given for both injecting and extracting money are im-
plicitly assuming that the optimizer will want to trade at least the amount
requested. That doesn’t have to be true. A safer approach would be to give
turnover an interval, perhaps something like:

turnover = cash.required * c(1, 1.01)

5.6 Asset Allocation

Asset allocation as we discuss it here means that we are interested in weights
rather than prices and asset units (like shares or lots). We restrict asset alloca-
tion to long-only.

trade.optimizer can handle such problems.
The key step is to create a price vector that is all ones.

> aa.prices <- rep(1, length(asset.names))

> names(aa.prices) <- asset.names

You then select a gross value that is large enough to satisfy the accuracy that
you desire. For example if getting the weight to the nearest basis point is good
enough for you, then set the gross value to 10,000. The gross value should be
given as an interval that has just one integer in it.

The command:

> aa.alt1 <- trade.optimizer(aa.prices, avar,

+ expected.return=aret, utility=’mean-var’,

+ risk.aversion=.02, long.only=TRUE,

+ gross.value=10000+c(-.5, .5))

80 CHAPTER 5. OPTIMIZING LONG-ONLY PORTFOLIOS

performs a mean-variance optimization.
You can get the weights from the portfolio optimizer object with:

> valuation(aa.alt1)$weight

A further example of this technique is the multiple scenario analysis on page
138.

5.7 Going Farther

Tasks that you might want to undertake:

• To add trading costs to your optimization command, see Chapter 8.

• To add constraints, see Chapter 3 on page 27.

• To review common mistakes, see Section 9.1.

• To improve your solution or examine the quality of solutions you are get-
ting, go to Chapter 11 on page 115.

• To export your solution to a file, see Section 7.3.

• To perform optimizations with multiple variances, expected returns and/or
benchmarks, go to Chapter 13.

Chapter 6

Optimizing Long-Short
Portfolios

This chapter discusses commands to optimize long-short portfolios.

The examples in this chapter are just sketches of what you are likely to
want to do in practice. Chapter 3 discusses all the constraints that may be
imposed. Some of the examples limit the number of assets that are held in the
portfolio or traded. These limits are convenient, but threshold constraints (page
37) may be better to use. Chapter 8 covers trading costs—it is usually a good
idea to constrain trading in some way, whether with trading costs or a turnover
constraint.

6.1 Required Inputs

The trade.optimizer function needs a price vector. The prices argument
needs to be a vector of prices with names that are the asset names. The assets
in prices control the assets that are used in the problem. Other inputs—such
as the variance and linear constraints—may contain additional assets (which
will be ignored).

Other than prices there is no single argument that is required. However,
there are two concepts that are required: the amount of money in the portfolio
has to be constrained somehow, and there has to be something that provides a
utility.

Monetary Value

The turnover or the amount of money (both long and short) in the portfolio
needs to be constrained. Details can be found on page 27

Utility

At least one of the arguments:

• variance

81

82 CHAPTER 6. OPTIMIZING LONG-SHORT PORTFOLIOS

• expected.return

• dist.center

must be given.

The dist.center argument and its mates are used to do utility-free optimization—
that is, to minimize the distance to an ideal target portfolio. This is likely to
be more common for long-only portfolios, but there is no reason not to do it
for long-short portfolios as well. If you do want to do it, see Section 5.4 (which
assumes long-only).

Assuming distance is out of the picture: If expected.return is not given,
then the utility is the minimum variance. If a variance is not given, then the
utility is the maximum expected return. If both are given, then the default
utility is to maximize the information ratio.

6.2 Examples

This section presents some examples. Feel free to skip over those that don’t
apply to you. These examples do not include arguments for the cost of trading
(see Chapter 8). Nor does it cover several of the constraints (see Chapter 3).

Maximize the Information Ratio

If you have a set of expected returns and a variance, then maximizing the
information ratio is a natural thing to do— and it is the default. This can be
done simply, with a command similar to:

> opt.ir1 <- trade.optimizer(prices, varian,

+ expected.return=alphas, gross.value=1.4e6,

+ net.value=c(-1e4, 2e4))

This puts 1.4 million currency units into the gross value of the portfolio, and
the net value is between negative 10,000 and positive 20,000.

There are a few additional arguments that will be useful in practice. If you
are building a new portfolio, then a more likely command is something like:

> opt.ir2 <- trade.optimizer(prices, varian,

+ expected.return=alphas, gross.value=1.4e6,

+ net.value=c(-1e4, 2e4), port.size=55, max.weight=.05)

This new command adds port.size to give a portfolio containing up to 55
assets. It also ensures that no position will be more than 5% of the gross value.

To update an existing portfolio, the command might be:

> opt.ir3 <- trade.optimizer(prices, varian,

+ expected.return=alphas, gross.value=1.4e6,

+ net.value=c(-1e4, 2e4), ntrade=15, max.weight=.05,

+ existing=cur.port, turnover=5e4)

6.2. EXAMPLES 83

Here both the number of assets in the trade and the turnover are limited, and
of course the existing portfolio is specified.

A more logical version of the command above constrains with risk.fraction

(see page 33) rather than max.weight:

> opt.ir4 <- trade.optimizer(prices, varian,

+ expected.return=alphas, gross.value=1.4e6,

+ net.value=c(-1e4, 2e4), ntrade=15, risk.fraction=.05,

+ existing=cur.port, turnover=5e4)

Maximize Return with a Bound on the Variance

If you have a target for the maximum variance that you want, then you can
add a constraint on the variance. Suppose that volatility should be no more
than 4%. We need to transform the 4% into a variance, and (possibly) go from
annual to the frequency of the variance. If the variance is on a daily frequency
(and created from returns in decimal as opposed to percent), then the command
would look like:

> opt.vc1 <- trade.optimizer(prices, varian,

+ expected.return=alphas, gross.value=1.4e6,

+ net.value=c(-1e4, 2e4), ntrade=55, risk.fraction=.05,

+ var.constraint=.04^2/252)

This is not doing quite what is advertised in the headline, but may actually
be more appropriate. This is really maximizing the information ratio with a
constraint on the variance. If the best information ratio has a variance that is
smaller than the bound, then it will be the best information ratio that is chosen.

If you truly want the maximum return given the variance bound, then you
need to say so explicitly:

> opt.vc2 <- trade.optimizer(prices, varian,

+ expected.return=alphas, gross.value=1.4e6,

+ net.value=c(-1e4, 2e4), ntrade=55, risk.fraction=.05,

+ var.constraint=.04^2/252, utility=’maximum return’)

Minimize Variance Given a Long List and a Short List

Suppose you don’t have specific predictions for the returns of the assets, but
you do have a set of assets that you predict will go up and a set you think will
go down. That is, you have a buy-hold-sell list. In this case you can force only
buys from the long list, sells from the short list, and minimize the variance of
the portfolio.

If long.names and short.names are vectors containing the asset names that
are predicted to go up and down, then the computation can proceed along the
lines of:

> long.zero <- rep(0, length(long.names))

> names(long.zero) <- long.names

> short.zero <- rep(0, length(short.names))

> names(short.zero) <- short.names

84 CHAPTER 6. OPTIMIZING LONG-SHORT PORTFOLIOS

S code note

These commands create two new vectors containing all zeros and with names
that are the long assets for one of them, and names that are the short assets for
the other. The rep function replicates its first argument.

These new vectors are then used as the lower.trade and upper.trade

arguments:

> opt.list1 <- trade.optimizer(prices, varian,

+ gross.value=1.4e6, net.value=c(-1e4, 2e4),

+ lower.trade=long.zero, upper.trade=short.zero,

+ universe.trade=c(long.names, short.names),

+ ntrade=50)

The lower.trade and upper.trade arguments to trade.optimizer are limits
on the number of units (e.g., lots or shares) that can be traded. Each asset can
be given a different limit. If what is passed in is a vector with names, then any
number of assets may be represented (in any order). So using long.zero as
the lower.trade argument says that the assets named by long.zero can not
have negative trades—that is, can only be bought. The same logic applies to
the upper.trade argument with short.zero.

Another important piece of the command is setting universe.trade so that
assets that are in neither long.names nor short.names won’t trade at all.

This example is a simple case—the lower and upper bounds can be more
complicated when there is an existing portfolio. It is possible that using the
positions argument (page 38) would be easier in such a case.

If, for example, the existing portfolio has a long position in an asset that is
on the short list, you may wish to force a sell in the asset that is at least as large
as the existing position. The commands above will not do that— you need to
resort to either the forced.trade argument or the positions argument.

> opt.list2 <- trade.optimizer(prices, varian,

+ gross.val=1.4e6, net.val=c(-1e4, 2e4),

+ lower.trade=long.zero, upper.trade=short.zero,

+ universe.trade=c(long.names, short.names),

+ ntrade=50, forced.trade=c(ABC=-25))

In this example we are forcing a sell of at least 25 units of asset ABC.

Mean-Variance Optimization

To do mean-variance optimization, you need to give both a variance and ex-
pected returns and set:

utility = "mean-variance"

You will want to specify the risk aversion as well. More details of the risk
aversion parameter are on page 123.

6.3. MANAGING CASH FLOW 85

> opt.mv1 <- trade.optimizer(prices, varian,

+ expected.return=alphas, gross.value=1.4e6,

+ net.value=c(-1e4, 2e4), ntrade=55, risk.fraction=.05,

+ utility=’mean-var’, risk.aversion=3.7)

Alternatively, you can do mean-volatility optimization by using:

utility = "mean-volatility"

6.3 Managing Cash Flow

The optimizer can be used to select trades to take money out of the portfolio, or
put money into it. The optimizer makes this process quite painless, even when
you want a fair amount of control over the trade.

The examples given below assume that the cash management is via the
gross value. An alternative would be to control the longs and shorts directly.
You would use the long.value and the short.value arguments for this more
specific control.

Injecting Money into a Portfolio

If you want to perform optimization with a constraint on the variance (see page
83), then a command that will do this while only increasing existing positions
is:

> curgross <- valuation(cur.port, prices)$total["gross"]

>

> opt.in1 <- trade.optimizer(prices, varian,

+ expected.return=alphas, gross.value=curgross + newcash,

+ net.value=c(-1e4, 2e4), ntrade=15, risk.fraction=.05,

+ var.constraint=.04^2/252, existing=cur.port,

+ turnover=newcash, universe.trade=names(cur.port))

The key points here are setting the gross value to the desired new amount,
and forcing the turnover to equal the amount by which the gross is increased—
this means that no positions can be reduced. Setting the trade universe to be
the assets that are in the current portfolio ensures that no new positions are
opened. If it is okay to open new positions, then do not give the universe.trade
argument. You can also increase turnover any amount that you want in order
to do rebalancing as well as managing cash.

Extracting Money out of a Portfolio

Taking money out of the portfolio is similar to putting it in, a suitable command
might be:

> curgross <- valuation(cur.port, prices)$total["gross"]

>

> opt.out1 <- trade.optimizer(prices, varian,

+ expected.return=alphas, net.value=c(-1e4, 2e4),

86 CHAPTER 6. OPTIMIZING LONG-SHORT PORTFOLIOS

+ gross.value=curgross - cash.required, ntrade=15,

+ turnover=cash.required, risk.fraction=.05,

+ var.constraint=.04^2/252, existing=cur.port,

+ universe.trade=names(cur.port))

The comments about the universe.trade and turnover arguments made about
injecting money also apply here.

The formulations given for both injecting and extracting money are im-
plicitly assuming that the optimizer will want to trade at least the amount
requested. That doesn’t have to be true. A safer approach would be to give
turnover an interval, perhaps something like:

turnover = cash.required * c(1, 1.01)

6.4 Money Constraints

If you are looking for a control in the optimizer for leverage, there isn’t one.
The amount of leverage applied is determined by the fund manager—leverage
is external to the optimization. The decision on leverage comes first, which
determines the gross value and the net value—quantities that the optimizer
does need to know.

caution

The expected return(s) (alpha.values) and variance(s) of the portfolio are
given in terms of the assumed net asset value, which is the gross value. If your
actual net asset value is different than this, then you need to adjust the results.

The constraints on the long and short values are not just redundant to the
gross and net value constraints. Figure 6.1 shows that if we plot the gross and
net value constraints, then these form a rectangle that is diagonal to the long
value and short value axes. The constraints displayed in the figure are the gross
value between 10 and 12, and the net value between -1 and 2. Constraints on
the long value and the short value will be vertical and horizontal sections, so
adding these change the shape of the allowable region.

6.5 Real-Time Monitoring

You may want to perform real-time optimization. The prices will change from
minute to minute, and if your expected returns change continuously as well,
then constantly updating the optimization could be valuable. Such a process is
very easy to set up. Here is an example:

> repeat{
+ prices <- update.prices() # user-defined function

+ alphas <- update.alphas() # user-defined function

6.5. REAL-TIME MONITORING 87

Figure 6.1: Constraints on gross, net, long and short values.

88 CHAPTER 6. OPTIMIZING LONG-SHORT PORTFOLIOS

+ cur.port <- update.portfolio() # user-defined function

+ cur.opt <- trade.optimizer(prices, varian,

+ expected.return=alphas, turnover=5e4, ntrade=5,

+ existing=cur.port)

+ if(length(cur.opt$trade)) {
+ deport(cur.opt, what="trade")

+ }
+ }

S code note

In S, repeat performs an infinite loop. Generally the body of a repeat loop
will contain a test of when the loop should be exited. In this case there is no
such test—the optimizations will continue to be performed until you explicitly
interrupt the loop. It would be easy enough to use the date function to check
the time of day and exit the loop after the close of trading.

This example has three functions that you would need to write. These
functions update the prices, the expected returns, and the positions in your
portfolio. If you are willing to assume that the suggested trades always happen,
then you could merely have:

cur.port <- cur.opt$new.portfolio

The technique here might be characterized as looking for the next small thing—
the size of the trade and the maximum number of assets to trade should probably
be small.

6.6 Going Farther

Tasks that you might want to undertake:

• To add trading costs to your optimization command, see Chapter 8 on
page 95.

• To add constraints, see Chapter 3 on page 27.

• To review common mistakes, see Section 9.1 on page 101.

• To improve your solution or examine the quality of solutions you are get-
ting, go to Chapter 11 on page 115.

• To export your solution to a file, see Section 7.3 on page 93.

• To perform optimizations with multiple variances and/or multiple ex-
pected return vectors, see Chapter 13.

• If you want a benchmark with a long-short portfolio, see Section 10.2.

Chapter 7

General Use

The core functionality of Portfolio Probe is generating random portfolios and
optimizing trades. More detailed description of these activities can be found in
other chapters. This chapter focuses on peripheral tasks. In particular there
are hints about using the S language.

7.1 Setting Up Data

Before computations can be performed, there needs to be data in place on
which to do the computations. Data that we may need include prices, existing
positions in the portfolio, expected returns, variances, membership of assets in
various groups such as countries and sectors, and so on.

Prices and Other Imports

You will probably need to import prices into S. You may need to get other data
into S as well. A typical command to create a price vector is:

> prices <- drop(as.matrix(read.table("prices.txt",

+ sep="\t")))

or

> prices <- drop(as.matrix(read.table("prices.csv",

+ sep=",")))

depending on whether your file is tab-separated or comma-separated. (Other
file formats can be handled as well.)

S code note

These commands are assuming that there are two items on each line of the
file—an asset name and a number which is the price of a given quantity of the
asset. The read.table function returns a type of S object called a data frame.
In S data frames and matrices are both rectangles of entries. A matrix must
have all of its entries the same type—for example all numbers or all character

89

90 CHAPTER 7. GENERAL USE

strings. A data frame has the freedom to have different types of entries in
different columns—one column could be numeric and another categorical.

In this example read.table creates a data frame that has one column,
which is numeric, and the asset names are used as the row names. This is then
converted from a data frame into a matrix. Finally the drop function changes
the object from being a one-column matrix into an ordinary vector. The reason
that there is the intermediate step of converting to a matrix is that the row
names are not preserved when a data frame is dropped to a vector. (There is a
reason for this—you can just think of it as an unfortunate fact.)

Other data will be imported in a similar fashion. Using as.matrix is fairly
likely, drop is only appropriate when there is a single column (or row) of data
and a simple vector is desired.

Variance Matrix

A variance matrix is often used in Portfolio Probe. If your problem is an asset
allocation with at most a few dozen assets, then a sample variance matrix as
computed by the var or cov.wt S functions should do (though there may be
better methods). For a large number of assets, a factor model or a shrinkage
model will probably be more appropriate.

You can use any variance matrix that you want. It can come from a com-
mercial source or you can compute it yourself.

If you need to compute the variance matrix yourself, there are functions in
the BurStFin package that will do that.

If you are using R on Windows, then you can get BurStFin with:

> install.packages("BurStFin",

+ repos="http://www.burns-stat.com/R")

If you are using a recent enough version of R, then you can get it from CRAN.
That is, you don’t need to have the second argument in the command above.

You can get the source with:

> download.packages("BurStFin", ’some directory’,

+ type="source", repos="http://www.burns-stat.com/R")

Once the package is installed for your version of R, you can do:

> library(BurStFin)

in each session in which you want to use its functionality (this command might
be slightly more complicated if you are using S-PLUS).

The factor.model.stat function in BurStFin creates a variance matrix
using a factor model. The command to get a variance matrix can be as simple
as:

> retmat <- diff(log(price.history))

> varian <- factor.model.stat(retmat)

Alternatively, a variance that shrinks towards the equal correlation matrix can
be computed with:

> varian <- var.shrink.eqcor(retmat)

7.1. SETTING UP DATA 91

S code note

Here price.history is a matrix of asset prices with the columns corresponding
to the assets and the rows corresponding to times (the most recent time last).
The calculation produces a matrix of returns which we call retmat in this case.
(The vector that is used as the prices argument could be the final row of the
price history matrix.)

The log function returns an object that looks like its input, but each element
of the output is the natural logarithm of the corresponding element of the input.

The diff function when given a matrix performs differences down each col-
umn. The first row of the result is the second row of the input minus the first
row of the input; the second row of the result is the third row of the input minus
the second row of the input; et cetera.

note

The retmat object holds log returns (also known as continuously compounded
returns). You may hear strong opinions on whether simple returns or log returns
are preferred. In mean-variance optimization neither is entirely correct, however
the results are likely to be quite similar—especially if daily or higher frequency
returns are used.

caution

Do not use daily returns when your data include assets from markets that
close at different times—global data in particular. The asynchrony of the re-
turns means that the true correlations are higher than those that will be es-
timated from the data. Thus optimizations will be distorted. Weekly is the
highest frequency that should be used with data that are substantially asyn-
chronous. (Note though that techniques do exist to adjust for asynchrony—see
[Burns et al., 1998].)

caution

There is the possibility of confusion with the word “factor”. In S an object that
is of type “factor” is something that is categorical. For example, a vector of the
sector or country of assets will (at some point at least) be a factor when used as
a linear constraint. A factor model does not contain any factors in this sense.

A large amount of the effort in factor.model.stat is dealing with missing
values. The default settings are reasonable for long-only optimizations. Possi-
bly a more appropriate matrix for benchmark-relative analyses and long-short
optimization would be:

> varian <- factor.model.stat(retmat, zero=TRUE)

For assets with missing values this biases correlations toward zero rather than
towards the average correlation as the previous command does.

92 CHAPTER 7. GENERAL USE

advanced

The treatment of missing values can have a material impact on the opti-
mization, and it can be beneficial to specialize the estimation to your particular
application. An easy way to do this is to return the factor model representation:

> varfac <- factor.model.stat(retmat, out="factor")

When the output argument is set to "factor", the result is a list with com-
ponents named loadings, uniquenesses and sdev. You can modify these to
correspond to an approach appropriate for you. Then you can create the vari-
ance matrix from the object:

> varian <- fitted(varfac)

This works because the result of factor.model.statwhen it returns the factor
representation—varfac in this case—has a class, and that class has a method
for the fitted generic function. The result of this function is the variance
matrix that is represented by the factor model.

Adding a Benchmark to the Variance

Perhaps you have a variance matrix of the individual assets, but the benchmark
is not included in the variance. You can add the benchmark to the variance
matrix if you have the weights for the constituents of the benchmark and all of
the constituents are in your variance matrix. Merely use the bench.weights

argument:

benchmark="BEN", bench.weights=list(BEN=BEN.wts)

The bench.weights argument takes a list that can contain any number of
benchmarks. The component names are the identities of the benchmarks, and
the components are named numeric vectors that should sum to 1 (or 100). The
names on the weights must be of assets that are in the variance matrix.

If there are risk.fraction constraints involving a benchmark, then the
bench.weights argument is required even if the benchmark is already incorpo-
rated into the variance.

The var.add.benchmark function in the BurStFin package returns an en-
larged variance with the benchmark included.

This computation (the one done via the bench.weights argument or the
var.add.benchmark function) is the preferred method of introducing a bench-
mark into a variance matrix for optimization. See [Burns, 2003a] for a study on
approaches to incorporating benchmarks into the variance matrix for optimiza-
tion.

7.2 The Random Generation or Optimization

The optimization process itself is covered in other chapters. The basics are
covered in chapters that depend on what you are doing:

• Random portfolio generation: Chapter 2.

7.3. POST-OPTIMIZATION 93

• Long-only portfolio optimization (active, passive or utility-free): Chapter
5.

• Long-short portfolio optimization: Chapter 6.

Trading costs are discussed in Chapter 8, while Chapter 3 covers constraints.
Chapters 9 and 13 have additional information—Section 9.1 on page 101 is

particularly recommended.

caution

If in optimization a penalty is imposed because one or more constraints are
broken, then the optimizer will produce a warning. Do not ignore the warning.
It could well mean that there is a mistake in the specification.

You can re-run the optimization—perhaps with an increased number of
iterations—to see if the optimizer finds a solution that does not break any
constraints. If that doesn’t work, you should probably investigate if you have
imposed constraints that don’t allow a solution. Section 9.1 on page 101 lists
some common mistakes.

On the other hand, this method of treating constraints allows backtests to
proceed even when the constraints that are imposed are infeasible for some of
the time periods. The answers that break the constraints, while not optimal,
may be (at least sometimes) reasonable.

7.3 Post-Optimization

This section is specific to optimization. If you are generating random portfolios,
then the analogous discussion is Section 2.2.

Once you have performed an optimization, there are two tasks remaining—
see what the trade is, and export the data so that the trade can be implemented.

Explore the Trade

Information on the optimization can be viewed using the summary function:

> opti <- trade.optimizer(prices, varian, long.only=TRUE,

+ gross.val=1e6)

> summary(opti)

The summary function provides information on:

• the utility, costs, and penalties for broken constraints

• opening and closing positions, etc.

• valuations of the portfolio and trade

• realization of linear (and count) constraints

• realization of risk fraction constraints

94 CHAPTER 7. GENERAL USE

• realization of distance constraints

You can get some more specific information by printing the optimal portfolio
object (which can be done by just typing its name):

> opti

Alternatively, you could look at an individual component of the object, such as
the trade:

> opti$trade

The prices that summary uses to value the portfolio are, by default, the prices
used in the optimization. You can give summary different prices:

> summary(opti, price=new.prices)

Export the Trade

The other task to be performed—once you are satisfied with the optimization—
is to place the information elsewhere. The deport function does this (“export”
is a logical name for this functionality, but that has a different meaning in R).
The simplest use of this function is just to give the name of the portfolio object:

> deport(opti)

[1] "opti.csv"

The return value of the function is a character string giving the name of the file
that was created. If the optimization was performed in terms of lots but you
want the file to reflect number of shares, the mult argument should be given.
If, for instance, all of the lot sizes are 100, then you would do:

> deport(opti, mult=100)

[1] "opti.csv"

When there are different lot sizes, you should give a vector containing the lot
size of each asset:

> deport(opti, mult=lotsizes)

[1] "opti.csv"

If you want the file to be in monetary units, then the mult argument should be
prices:

> deport(opti, mult=prices, to="txt")

[1] "opti.txt"

This command writes a tab-separated file (which in this case is called opti.txt).
The what argument can be given to control what information is put into the
file—see the help file for details.

7.4 Going Farther

• See Chapter 4 for the valuation (and returns) of portfolios.

Chapter 8

Trading Costs

This chapter covers trading costs. It is possible to constrain costs, so costs can
be used when generating random portfolios. This is only likely when imitating
a series of trades with random trades.

Costs are a tricky part of optimization, but are extremely important.

8.1 Background

If there were any justification for the attitude that optimization is hard, it
should be on account of trading costs. However, the problem of trading costs is
fundamental to fund management—you have to confront the issue whether or
not you use an optimizer.

There are numerous sources of trading costs—commissions, bid-ask spread,
and market impact are commonly considered. Less obvious costs can be such
things as capital gains taxes if a position is sold, and the cost of imperfectly
known expected returns. Costs need not be symmetric for buying and selling.
You may, for example, want the cost of increasing positions to be more than
the cost of decreasing them, because of increased liquidity risk and/or because
of the implicit cost of needing to close the position again.

There are (at least) three key questions with transaction costs:

• What are the costs (both visible and invisible)?

• How should those costs be amortized?

• How should the amortized costs be added to the utility?

The first question is fundamental to asset management.

The second and third questions are challenging as well, and discussed more
fully in Section 8.4. Once the last question is answered, the ucost argument
allows an easy way to implement the answer. The cost for a trade is multiplied
by ucost before it goes into the utility computation.

95

96 CHAPTER 8. TRADING COSTS

8.2 Specifying Costs

Costs are specified similarly in trade.optimizerand random.portfolio. When
generating random portfolios, costs will be ignored unless limit.cost is given
(or the utility is constrained).

The specification of costs is very flexible while simple costs can be given
easily. To allow for asymmetry in costs, there are four cost arguments:

• long.buy.cost

• long.sell.cost

• short.buy.cost

• short.sell.cost

This allows differences in the costs for long positions versus short positions, as
well as differences for selling and buying.

If there is no difference between buying and selling, and between long and
short positions, then give only the long.buy.cost argument.

caution

If you give one of the cost arguments other than long.buy.cost but no others,
then the named situation will be the only case where there is cost. That seems
unlikely to be what you want.

Minimally, costs must be given for all of the assets that are allowed to trade
in the problem (if costs are given at all). Costs may be given for any number
of assets as long as all the tradeable assets are included.

Linear Costs

Linear costs are given with a vector (or a one-column matrix) of costs. For
example, to have costs of 30 basis points for all trades, the command would be:

> opt1 <- trade.optimizer(prices, ...,

+ long.buy.cost = prices * .003)

To have costs of 50 basis points for short sales and costs of 30 basis points for
all other trades, the command is:

> opt2 <- trade.optimizer(prices, ...,

+ long.buy.cost = prices * .003,

+ short.sell.cost = prices * .005)

The “...” in these commands and subsequent ones refers to additional arguments
that you want in the optimization.

The advantage of linear costs is that they are easy to think about and easy
to write down. Linear costs are undoubtedly more popular than they otherwise
would be because computational engines have generally been unavailable for
more realistic models of cost.

8.2. SPECIFYING COSTS 97

Nonlinear Costs

Costs are unlikely to really be linear. It can be quite useful to have non-integer
exponents in the trading cost functions. This is allowed via the cost.par ar-
gument. cost.par is a vector giving the exponents for the cost function.

Consider:

> cost.poly

[,1] [,2] [,3] [,4]

ABC 0.00 0.01 0.02 0.00

DEF 0.03 0.02 -0.01 0.01

> trade.optimizer(..., long.buy.cost=cost.poly)

> trade.optimizer(..., long.buy.cost=cost.poly,

+ cost.par=0:3)

These two calls to trade.optimizer are equivalent (though there would be a
slight computational efficiency advantage to the first one). Polynomial costs are
easy to specify, but unlikely to be realistic.

A more telling use of cost.par is:

> trade.optimizer(..., long.buy.cost=cost.poly,

+ cost.par=c(0, 1, 1.5, 2.34))

In this case if ABC trades 30 lots and DEF trades -25 lots, then the cost for ABC
will be:

0 + .01(30) + .02(301.5) = 3.586

The cost for DEF will be:

.03 + .02(25)− .01(251.5) + .01(252.34) = 17.952

When cost.par is used, there is a restriction that all of the cost matrices
must have the same number of columns as cost.par. In actuality there is no
loss of generality as columns of zeros can be added to matrices as required, and
cost.par can be the union of all of the desired exponents.

We’ve seen cost.par as a vector of exponents. It is also possible to give
cost.par as a matrix with rows corresponding to assets. This allows each asset
to have its own set of exponents as well as coefficients.

If cost.par were:

[,1] [,2] [,3] [,4]

ABC 0 1 1.5 2.34

DEF 0 1 1.5 2.34

then it would yield just the same as before. But the point of giving a matrix is
that not all rows have to be the same:

[,1] [,2] [,3] [,4]

ABC 0 1 1.57 2.11

DEF 0 1 1.45 2.62

98 CHAPTER 8. TRADING COSTS

8.3 Power Laws

[Grinold and Kahn, 2000] present an argument that the trading cost per unit of
an asset should be commission plus half the bid-ask spread plus some constant
times the square root of the quantity: the amount to be traded divided by the
average daily volume. The last term involving the square root comes from an
inventory model. They suggest that the constant should be on the order of the
daily volatility of the asset.

Sample code implementing this model might look like:

> cost.mat <- cbind(commission + spread[names(prices)] / 2,

+ volatility[names(prices)] / sqrt(ave.daily.volume[

+ names(prices)]))

>

> trade.optimizer(..., long.buy.cost=cost.mat,

+ cost.par=c(1, 1.5))

The first command creates a two-column matrix. The first column relates to
the items that are linear (commission and spread), the second column contains
the cost involving the square root of the trade volume. When this is used in an
optimization, the exponents for these columns are 1 and 1.5, respectively.

The second coefficient is 1.5 (where naively you may expect it to be 0.5)
because the square root rule says that the cost per share depends on the square
root of the number of shares traded. (If you think in terms of calculus, we are
taking the integral of the cost function.)

[Almgren et al., 2005] empirically found a power of 0.6 to fit a set of trades
on large US stocks. Since a square root is a power of 0.5, their findings suggest
that trading costs grow slightly faster as the size of the trade increases.

If you were to use this power law, then the cost.par in the example above
would be 1 and 1.6 instead of 1 and 1.5. Except maybe not. Use 1.6 if the
coefficient you have is per share. You would use 0.6 if the coefficient you have
is for the market impact of the trade with the linear costs stripped out.

8.4 On Scaling Costs Relative to Utility

There are (at least) three things we want in the costs that we declare:

• The cost of a larger trade in an asset is appropriate relative to a smaller
trade of that asset.

• The cost of trading one asset is well-scaled relative to the cost of trading
the other assets.

• The costs are appropriately scaled in light of the utility that is used.

The proper scaling of the costs relative to the utility—whether that is expected
returns (and variance), or distance—is the point where the science gets a bit
fuzzy. This is also a key issue controlling the merit of the optimization. If
the costs given the optimizer are too small, then excessive trading eats up per-
formance. If the given costs are too large, then performance is hurt via lost

8.5. COSTS DUE TO TAXES 99

opportunity. Perfection is not necessary for the optimization to be of value, but
attempting perfection is probably not such a bad mission.

The added utility of a trade needs to compensate for the transaction cost.
Thus the costs should correspond to the expected returns over the expected
holding period.

To be more specific, suppose that we think it will cost 50 basis points to
trade a certain asset. If we are using daily data and our expected return for this
asset is 10 basis points, then we will have to have a holding period of 5 days
in order to break even. To amortize the cost, it (that is, the 50 basis points)
should be divided by the number of days that we expect to hold this asset. If
we expect to hold it for 2 days, the optimizer would see a cost of 25 basis points.
If we expect to hold it 10 days, the optimizer would see a cost of 5 basis points.
(The statement of this example might seem to imply that volatility is of no
concern—it is of concern.)

Let’s revisit the example from Section 8.3:

> cost.mat <- cbind(commission[names(prices)] +

+ spread[names(prices)] / 2,

+ volatility[names(prices)] / sqrt(ave.daily.volume[

+ names(prices)]))

>

> cost.amort <- cost.mat / expected.holding[names(prices)]

>

> trade.optimizer(..., long.buy.cost=cost.amort,

+ cost.par=c(1, 1.5))

This adds a command which divides (what might be called) the raw costs by
how long we expect to hold each asset. The result is the amortized costs. The
holding period should be in the same time units as the expected returns. If we
have daily returns, then an asset that we expect to hold 25 days should have
25 as its expected holding period. However that same asset should have an
expected holding period of about 0.1 when we are using annualized returns.

You can use the ucost argument to scale the cost relative to the other items
in the utility.

That the expected returns are noisy suggests that the costs should be in-
creased from this “rational” value to reduce trading.

There is another sense of scaling costs. By default trade.optimizer sums
the costs from all of the trading and then divides by the gross value of the port-
folio. This is the natural thing to do as the expected returns and the variance
are also scaled by the gross value when the utility is computed. However, you do
have the option to scale by the trade value or not to scale the costs at all—this
is controlled by the scale.cost argument.

8.5 Costs Due to Taxes

Taxes present a cost structure that is entirely different from trading costs re-
sulting from the market. In particular the cost will be different depending on
whether you are buying or selling. More detail on costs due to taxes can be
found in [diBartolomeo, 2003] and its references.

100 CHAPTER 8. TRADING COSTS

Several optimizers implement piecewise linear cost functions. While this
choice is likely to be due to mathematical tractability, costs (and benefits) from
taxes really are piecewise linear in some circumstances. The tax liability often
depends on the length of time an asset has been held, and there may be several
holding periods for a particular asset. Portfolio Probe does not have piecewise
linear costs, but you can approximate them with nonlinear costs.

Taxes also have a sort of time decay similar to options. Their effect changes
as the end of the tax period gets closer.

8.6 Going Farther

Additional steps might be:

• To look for trouble spots with Chapter 9 on the next page

Chapter 9

Practicalities and
Troubleshooting

The best question to ask after a computation has been performed is: Does it
make sense?

The purpose of this chapter is to help with that question—to give hints about
how it might not make sense, and to give possible solutions when it doesn’t.

Though there will be a tendency to come to this chapter only when you think
something is wrong, the best time to come to it is when you think everything
is right.

While some of the problems listed in this chapter are specific to optimization,
there are many that will affect the generation of random portfolios also.

The sections of this chapter are:

1. Easy ways to be wrong.

2. Suppressing warnings (page 104).

3. Cheatsheets (page 107).

4. Troubleshooting (page 109).

5. S Language Problems and Solutions (page 110).

9.1 Easy Ways to Be Wrong

The phrase “garbage in, garbage out” has gone slightly out of fashion, but it
still has currency. What follows are a few possibilities for garbage.

Data Mangling

The prices are not all in the same currency.

It doesn’t matter which currency is used, but there needs to be only one.

101

102 CHAPTER 9. PRACTICALITIES AND TROUBLESHOOTING

There are prices for the wrong quantity.

For example, the optimization is thought of in terms of lots, but the prices for
some or all of the assets are for shares.

There are stock splits, rights issues, etc. that have not been accounted
for.

Stock splits and rights issues that are not caught can mean that your existing
holdings are wrong in the optimization.

A missed split in the price history degrades variance estimates that are based
on returns created from the price history.

The variance is of prices, not returns.

The variance matrix of the returns of the assets is needed. If the variance is of
the prices, the results will be seriously wrong. (The functions in BurStFin that
create variance matrices from data give a warning if prices are used.)

The variance and/or expected returns are not properly scaled.

The scaling that is chosen does not matter, but it needs to be consistent. The
(time) scales of the variance and the expected returns should match—for exam-
ple they can both be annualized, or both be daily. You also need such things
as benchmark constraints to be scaled to match the variance. Costs need to
account for the time scale of the expected returns, and whether or not the
expected returns are in percent.

The variance matrix is singular.

While the Portfolio Probe optimization algorithm will happily handle singular
matrices, the results need not be useful. If there are more assets than time
points in the returns data, then a factor model or shrinkage estimator rather
than a sample variance should be used. This problem is certainly more serious
for long-short portfolios, but is problematic for long-only portfolios as well.

If the true variance really is singular—for example cash is one of the assets
(see page 138)—then you should get good results. The problem is if the variance
matrix says that there are portfolios that are essentially riskless when they are
not. That is, you want the variance to be decidedly positive definite excluding
benchmarks and cash.

The variance matrix is not symmetric.

The optimizers inherently assume that the variance is symmetric. They will get
confused if this is not the case. If what you are using as the variance is not
symmetric, then you can get a version that is with:

> varian.sym <- (varian + t(varian)) / 2

9.1. EASY WAYS TO BE WRONG 103

There is asynchrony in the data.

Global data should not be used at a higher frequency than weekly unless asyn-
chrony adjustments are made. In addition to different opening hours, asyn-
chrony can be caused by assets that do not trade often. The illiquid assets will
have stale prices. A model that adjusts for asynchrony due to different opening
hours is presented in [Burns et al., 1998].

The expected return for a benchmark is not equal to the weighted
average of the expected returns of its constituents.

This problem is pointed out in [Michaud, 1998]. Minor violations are unlikely
to have much affect, but differences do distort the optimization. This is not an
issue if you use the bench.weights argument and do not include benchmarks
in the expected returns.

The signs of covariances in the variance matrix are reversed for assets
that are intended to be short.

While this could produce valid results if properly done, it is confusing and
totally unnecessary. Portfolio Probe was developed with long-short portfolios
in mind—bizarre manipulations can be eliminated.

Input Mangling

While many mistakes are caught by the software, it is quite possible to confuse
the inputs. One check is to see if the optimizer is using the objective that you
intend. You can do this by:

> opt.1$objective.utility

[1] "mean-variance, risk aversion: 0.02"

The name of an argument is inadvertently dropped.

For example, you add a starting solution to a command, but forget to name it
start.sol so the optimizer thinks it is a different argument. Most arguments
are checked for validity, but in some cases the checks may not be good enough.

You confuse the meaning of “start.sol” with “existing”.

The start.sol argument should be one or more solutions that are used as
starting values for the trade in optimization. The current portfolio should be
given in the existing argument.

You confuse the meaning of the “lower.trade” or “upper.trade” ar-
gument.

If you habitually abbreviate the lower.trade argument to lower, you may
begin to think of the bound as being on the final portfolio rather than on the
trade.

104 CHAPTER 9. PRACTICALITIES AND TROUBLESHOOTING

Bounds for linear constraints are not properly scaled.

Values in lin.bounds need to match the corresponding value in lin.style. If
the bounds are in values but the style is in weight, then there probably isn’t a
real constraint. Alternatively if the bounds are in weights and the style is in
value, then the constraint is likely to be impossible.

You do not give the lin.abs or lin.trade argument when needed, or
reverse the meaning.

If the bounds are set for net constraints but lin.abs is not given, then the
constraints could be inconsistent. Even worse and more likely, they may not be
inconsistent and give an answer that on the surface seems okay.

You give just one trading cost argument, but it is the wrong argu-
ment.

If you want costs to be the same whether the position is long or short, and
whether you are buying or selling, you need to give the long.buy.cost argu-
ment. If you give a different argument, then the costs correspond to the named
situation only and the costs in other situations are zero. There will be a warning
if you do this.

You maximize the information ratio and the portfolio can reproduce
the benchmark.

In this case the portfolio variance goes toward zero so the information ratio goes
toward infinity. The real problem is probably that you want to have constraints
so that the portfolio can not look so much like the benchmark. One workaround
is to put a lower limit on the variance using the var.constraint argument.

9.2 Suppressing Warning Messages

While warning messages help avoid mistakes, they can be annoying (and counter-
productive) if they warn about something that you know you are doing. If you
have warning messages that you are expecting, it is easy to overlook warnings
that you are not expecting and that portend danger.

The do.warn argument of random.portfolio and trade.optimizer can be
used to suppress most warnings. Here is an example of its use:

do.warn = c(utility.switch=FALSE, value.range=FALSE)

Note that abbreviation of the names is allowed as long as the abbreviation is
unique among the choices.

Some warnings are never suppressed—these are more likely to be mistakes.
You should reformulate the command to avoid such warnings whether or not
the original is a mistake.

The default is TRUE for all entries except converged (which defaults to FALSE

since non-convergence of the optimization is seldom of concern).

Here are the possible entries for do.warn:

9.2. SUPPRESSING WARNING MESSAGES 105

• alpha.benchmark: When bench.weights is given, the expected return for
each benchmark is computed as the weighted sum of the asset expected
returns. If the expected return for the benchmark is given and is different
than the computed value, then a warning is issued (and the given value
overrides the computed value).

• back.compat: The warnings, if any, that apply are different from version
to version. The warnings are of changes between versions of Portfolio
Probe that may be significant.

• benchmark.long.short: A benchmark is used in a long-short portfolio.
While this can be correct, it often is not. See Section 10.2.

• bounds.missing: There are rows missing from the lin.bounds object
that should logically be there. The missing bounds are taken to be infinite.
This is almost certainly caused by something going wrong, or at least
sloppy use.

• converged: (optimization only) Convergence is declared if more than
fail.iter consecutive iterations fail to improve the solution. If the max-
imum number of iterations is performed before this condition occurs, then
there is no convergence for the run. When stringency is positive, the
convergence is a little more complicated.

• cost.intercept.nonzero: One or more of the cost arguments have non-
zero values for the intercept. (This only applies when polynomial costs
are given.) This may well be correct, but it is easy to forget the intercept
column in the cost matrix.

• dist.prices: One or more of the assets that are in prices are not in (a
component of) dist.prices and hence are assumed to be zero.

• dist.style: Since it is easy to make a mistake between giving shares
or values to the dist.center argument, a check is made to see if what
is stated in dist.style fits into the gross value range that is given or
inferred.

• dist.zero: One or more of the assets in (a component of) dist.center
have a non-zero value but a price of zero in dist.prices.

• exit.obj: The optimization was exited early due to the objective being
better than the exit.obj control value.

• extraneous.assets: One or more objects contain data on assets that are
not in prices and hence not of use in the computation.

• index.zero: An argument that expects zero-based numbers is given and
it is ambiguous whether the values are zero-based or one-based.

• ignore.max.weight: One or more assets in the existing portfolio break
their maximum weight constraint; and either maximum weights are not
forced to be obeyed, or the trade can not be forced to be large enough.
See page 32.

106 CHAPTER 9. PRACTICALITIES AND TROUBLESHOOTING

• infinite.bounds: All bounds in lin.bounds are infinite, meaning there
are no bounds at all.

• max.weight.restrictive: The vector of maximum weights is very re-
strictive. That is, the sum of (a subset of) the maximum weights is only
slightly more than 1.

• neg.dest.wt: (optimization only) There is at least one negative destina-
tion weight in the utility table. This is almost surely wrong unless the
problem is outside typical portfolio optimization.

• neg.risk.aversion: (optimization only) There is at least one negative
risk aversion value. Risk aversion is traditionally thought to be non-
negative, but you could have a special situation.

• no.asset.names: One or more objects do not have asset names, and
hence require that they be in the same order as the assets in prices.
Some objects are allowed to not have asset names in order to facilitate
quick experiments—asset names are always recommended for production
situations.

• noninteger.forced: There is a forced trade that is constrained such that
the trade must be non-integer. This could be something you want to do,
but can mean that something is wrong with the specification of constraints.

• nonzero.penalty: (optimization only) The penalty is non-zero, meaning
that not all constraints are satisfied.

• notrade: The formulation does not allow any trading. If you really want
no trading, then the recommended approach is to set ntrade = 0.

• novariance.optim: (optimization only) An optimization (other than with
a distance) is requested but no variance is given. This can be a reasonable
operation for some long-short situations, but is generally suspicious.

• penalty.size: (optimization only) The risk aversion parameter is large
relative to the values in penalty.constraint. In this case the optimizer
may have problems getting the constraints to be obeyed.

• positions.names: The asset names in the positions argument are not
the same as the universe of assets in the problem.

• random.start: (random portfolios only) The start.sol argument is
given, which is ignored in random.portfolio. start.sol is sometimes
confused with existing (the current portfolio).

• randport.failure: (random portfolios only) Fewer than the requested
number of random portfolios were generated.

• riskfrac.part: The risk.fraction argument only applies to one variance-
benchmark combination but there are additional combinations.

• start.noexist: The start.sol argument is given, but existing is not.
This is sometimes what is wanted, but it might indicate that the meaning
of start.sol is confused with existing.

9.3. CHEATSHEETS 107

• superfluous.constraint: A constraint is stated that is always satisfied.

• thresh.notrade: Some assets are not able to trade because their thesh-
olds are too large.

• turnover.max: The maximum turnover is too large to have an effect. If
you want to specify a minimum turnover but no maximum turnover, then
this warning is avoided by setting the maximum to Inf.

• utility.switch: (optimization only) The utility (either given or default)
is switched to another utility.

• value.range: One or more of the ranges for monetary value (gross.value
etc.) is narrow relative to the prices.

• var.eps: (optimization only) If the portfolio variance goes very small
when the information ratio is being maximized, then weird things can
start to happen. A leading case of this is when a benchmark is used and
the benchmark can be reproduced almost exactly. A fairly naive test is
used to try to highlight such cases.

• variance.benchmark: When bench.weights is given, variance values are
computed for each benchmark based on the weight vector. If the variance
already includes the benchmark and values are different than the com-
puted values, then a warning is issued (and the given values override the
computed values).

• variance.list: A compact variance is given, which means that there is
no way to check that the assets are the same (and in the same order) as
the assets in prices.

• zero.iterations: The iterations.max argument can be set to zero, but
this is not the same as doing no optimization. To get the start.sol trade
as the final trade, set funeval.max to zero or one.

• zero.variance: If more than one value on the diagonal of a variance is
zero (think ”cash”), then it seems like trouble should happen. However,
no such troubles have been observed so far.

9.3 Cheatsheets

Implied Ranges

Table 9.1 lists the true meaning of a single number for those arguments that
represent a range of values. Note that close.number is the outlier in that its
single value means exactly that value.

Threshold Inputs

Table 9.2 shows the meaning of the threshold argument when given a matrix
with each of the allowable number of columns—a plain vector is the same as a
one-column matrix. The subscript of the values in the table indicate the column

108 CHAPTER 9. PRACTICALITIES AND TROUBLESHOOTING

Table 9.1: Implied ranges of arguments.
argument input meaning

gross.value x [x * allowance, x]
net.value see Section 3.2
long.value x [x * allowance, x]
short.value x [x * allowance, x]
turnover x [0, x]
ntrade n [0, n]

port.size n [1, n]
alpha.constraint x [x, Inf)
var.constraint x [0, x]
bench.constraint x [0, x]

limit.cost (must give the range)
close.number n [n, n]

Table 9.2: The meaning of threshold inputs.
threshold constraint 1 column 2 columns 3 columns 4 columns

trade sell −x1 x1 x1 x1

trade buy x1 x2 x2 x2

portfolio short 0 0 NA x3

portfolio long 0 0 x3 x4

of the value. So x1 is from the first column and x2 is from the second column,
and so on. A three-column matrix can only be given in the case of a long-only
portfolio.

Positions Inputs

Table 9.3 indicates the allowable number of columns for objects given as the
positions argument, and the meaning of those columns. See Section 3.7 for
more details.

Table 9.3: The column order for the positions argument.
meaning 2 columns 4 columns 8 columns

min portfolio value x x x
max portfolio value x x x

min trade value x x
max trade value x x

trade sell threshold value x
trade buy threshold value x

portfolio short threshold value x
portfolio long threshold value x

9.4. TROUBLESHOOTING 109

9.4 Troubleshooting

This section lists a number of problems and possible solutions.

Utility Problems

The utility stays the same when I change the risk aversion.

There are at least two possibilities:

1. The objective is neither mean-variance nor mean-volatility—it could be
maximizing the information ratio, minimizing variance or maximizing re-
turn. Check the objective.utility component of the output.

2. You are passing in a value for the utable argument. In this case you
need to set force.risk.aver to TRUE in order for the risk.aversion

argument to override the value that is already in the utility table.

I’m minimizing the variance, and the utility is exactly zero.

The problem is almost certainly that the objective is to maximize the informa-
tion ratio. You can explicitly set the objective.

This does not occur if neither the expected.return nor utable arguments
are given. It can happen if you give a vector of expected returns that are all
zero.

Portfolio Problems

The optimizer is suggesting trades in which some of the assets trade
a trivial amount.

Use the threshold argument— see Section 3.5.

The optimal portfolio has positions that are very small.

Use the threshold argument— see Section 3.5.

I’m building a portfolio and the optimizer is having problems getting
the monetary value of the portfolio right.

One possibility is that the max.weight (or risk.fraction) argument is too
small. If there are only a few assets allowed in the portfolio, the sum of allowable
maximum weights can be less than 1. The error of max.weight being too small
will be caught in simple cases. However, it is possible for the test to be fooled
by a combination of restrictions on trading.

Another possibility is that the ranges of the money values (gross.value,
etc.) are too narrow.

The optimizer is not performing a trade that I am insisting upon via
the lower.trade or upper.trade argument to trade.optimizer.

Use the forced.trade argument—see Section 3.6.

110 CHAPTER 9. PRACTICALITIES AND TROUBLESHOOTING

What if I don’t have prices?

You can do an asset allocation and effectively get weights back. See page 79.

I’m trying to generate random portfolios with constraints I know
work, but it fails.

You can set the S language seed to some number and try the call to random.portfolio
again. For example:

> set.seed(123)

9.5 S Language Problems and Solutions

This section provides a little help with some of the aspects of the S language
that you might be most likely to bang your head against.

“Some hints for the R beginner” on the Tutorials page of the Burns Statistics
website might also be of help.

Creating Matrices

There are a number of places in this document where we create a matrix. This
process generally involves either cbind or rbind.

cbind as in “column bind” and rbind as in “row bind”. That sounds simple
enough—and it is as long as you pay attention to the details:

> cbind(A=c(1, 2))

A

[1,] 1

[2,] 2

> cbind(A=1, 2)

A

[1,] 1 2

Both of these forms can be useful, but they give matrices that are oriented in
different directions.

Debugging

[Burns, 2011] contains a slightly expanded introduction to debugging, and there
are a number of additional sources. Here is something to get you started.

Suppose we do something and get an error:

> update(soft.op1, expected.return=new.alpha)

Error in trade.optimizer(prices = priceten, variance = varten:

Object "new.alpha" not found

Now in this instance it is clear that the problem is the new.alpha that we tried
to use. But the error could be very much more obscure—it could be unable
to find an object that we’ve never heard of, and possibly in a function that we
didn’t know we were using.

9.5. S LANGUAGE PROBLEMS AND SOLUTIONS 111

You can always do the following to get a sense of where the problem hap-
pened:

> traceback()

6: trade.optimizer.pre(prices = priceten, variance = varten, ...

5: trade.optimizer(prices = priceten, variance = varten, ...

4: eval(expr, envir, enclos)

3: eval(call, parent.frame())

2: update.default(soft.op1, expected.return = new.alpha)

1: update(soft.op1, expected.return = new.alpha)

Sometimes just seeing the traceback can be enough to understand what went
wrong. Other times, no. For those other cases we can actually go into any of
those function calls and see the state at the time of the error. But we can only
do that if the ground was prepared before the error happened. Generally it is
easy enough to reproduce the error.

We want to set the error option to save the contents of the function calls
and not just what the calls were:

> options(error=dump.frames)

> update(soft.op1, expected.return=new.alpha)

Error in trade.optimizer(prices = priceten, variance = varten:

Object "new.alpha" not found

> debugger()

Message: Error in trade.optimizer(prices = priceten, :

Object "new.alpha" not found

Available environments had calls:

1: update(soft.op1, expected.return = new.alpha)

2: update.default(soft.op1, expected.return = new.alpha)

3: eval(call, parent.frame())

4: eval(expr, envir, enclos)

5: trade.optimizer(prices = priceten, variance = varten

6: trade.optimizer.pre(prices = priceten, variance = varten,

Enter an environment number, or 0 to exit Selection: 6

Browsing in the environment with call:

trade.optimizer.pre(prices = priceten, variance = varten

Called from: debugger.look(ind)

Browse[1]>

Here we have selected frame 6 (the call to trade.optimizer.pre) and at this
point the objects that that function has created are available to us to explore.
You can do:

Browse[1]> ls()

to see what objects are there. When you want to exit, just type c (as in
continue):

Browse[1]> c

This particular error can have a few causes:

112 CHAPTER 9. PRACTICALITIES AND TROUBLESHOOTING

1. The object truly does not exist.

2. You mistyped the object name.

3. The object exists but in a place that is not being searched.

There are envir arguments to a few functions that may sometimes solve problem
3 in R.

Chapter 10

Special Instructions

This chapter contains instructions for how to overcome specific problems. For
example, how to do something that the program perceives as an error. In
general, these are longer versions of error or warning messages that you might
receive.

10.1 Special Instruction 1: Long-only when shorts

exist

It is an error to declare the portfolio to be long-only when there are short
positions in the existing portfolio. If you have short positions currently and you
want to create a long-only portfolio, then you should do the following:

• Declare long.only=FALSE

• Use positions to set the long-only constraint for the portfolio.

For the last item you could alternatively use forced.trade and lower.trade,
but positions is the easier approach.

The positions argument could be built like:

> posarg <- cbind(rep(0, length(prices)), Inf)

> dimnames(posarg) <- list(names(prices), NULL)

Then used like:

positions = posarg

10.2 Special Instruction 2: Benchmark in long-
short optimization

Naively using a benchmark with a long-short portfolio is probably not what
you want to do. Creating a benchmark in Portfolio Probe (and elsewhere) is
equivalent to being short the benchmark in the amount of the gross value.

If you have a portfolio in the genre of 120/20, then a benchmark is concep-
tually fine but operationally wrong. If you use the benchmark argument, you

113

114 CHAPTER 10. SPECIAL INSTRUCTIONS

will be short 140% of the benchmark with a 120/20 portfolio while you want to
be short 100%.

Whether you have a benchmark in the traditional sense or in the sense that
you have a set of liabilities, there are at least two choices:

• Put the portfolio of liabilities as a short asset in the portfolio and stop it
from being traded.

• Use a variance matrix that is relative to the liabilities.

There are two functions in the BurStFin package that may be of use in this
situation. The var.add.benchmark function allows you to add a portfolio of
assets to a variance matrix. var.relative.benchmark transforms a variance
matrix to be relative to one of its assets.

Chapter 11

Adjusting Optimization
Speed and Quality

The default control settings for the optimizer are a compromise between the
time it takes to finish and the quality of the solution.

Optimization is usually done in one of two settings:

• Backtesting strategies

• Production

In backtesting, the quality of the solution is much less of an issue than the
speed of the optimization. If the default setting seems too slow to you, you can
decrease the maximum number of iterations allowed. Setting

iterations.max = 5

is a possibility—this is not unreasonably small for a lot of problems.

For production where time is not critical and quality is more of concern,
then an easy way to get better solutions is to add the argument:

stringency = 1

This will take a few times longer to execute, but will give at least as good of a
solution.

The rest of the chapter goes into more detail about the options that you
have and what they mean.

11.1 Staying at a Given Solution

A special type of “optimization” is to just return an object where the solution is
the same as the starting value. At first glance this seems like a useless operation,
but in fact there are many reasons to do this—here are a few:

• See the cost of a solution

115

116 CHAPTER 11. ADJUSTING OPTIMIZATION SPEED AND QUALITY

• See constraint violations of a solution

• Get expected returns, variances and so on of random portfolios (this is
what randport.eval does)

• Ensure that another program is doing the same problem

• Examine the utility of your current portfolio, or of a proposed trade

trade.optimizer makes this easy. Give the trade that you want to test as the
start.sol argument, and set funeval.max to zero or one. An asset allocation
example is:

> aa.gs1 <- trade.optimizer(aprice, avar.medium,

+ aret.medium, gross.value=ten.thou,

+ long.only=TRUE, utility="mean-variance",

+ risk.aversion=.05, start.sol=e60b40, funeval=0)

> valuation(aa.gs1)$weight

equities bonds

0.6 0.4

> aa.gs1$utility.value

[1] 2.08

> aa.gs1$alpha.value

[1] 6.4

> aa.gs1$var.value

[1] 169.6

Note that setting:

iterations.max = 0

is not the same. This still allows the pre-iteration and post-iteration operations
and the result could be substantially different from the starting solution.

If the existing portfolio is where you want to stay, then you can use the
argument:

ntrade = 0

11.2 Reducing Time Use

You may want to reduce the time that an optimization takes because you are
doing a large number of optimizations. The only viable way to reduce time is
to reduce the iterations.max argument.

For a lot of problems 5 iterations is likely to optimize enough that backtests
will give the right indication. Zero iterations will almost surely be too few, but
even one iteration may not be so terrible.

11.3. THE OPTIMIZATION PROCESS 117

11.3 The Optimization Process

This section briefly describes the optimization algorithm so that the suggestions
for improving quality in the next section will make sense.

The optimization process can be broken into three levels:

• sub-algorithms

• iterations

• runs

The algorithm for trade.optimizer is generally described as a genetic algo-
rithm. That is a simplification. Each iteration performs several sub-algorithms—
some of them genetic (plus simulated annealing), and others can be described
as greedy algorithms.

A run is a series of iterations. The run ends when too many consecutive
iterations fail to find an improvement. That number of failures is controlled
by the fail.iter argument, which has a default of zero. So, by default, any
iteration that fails to improve will cause the run to end. If fail.iter is 1, then
it takes two consecutive iteration failures to end the run.

The default is to perform a single run. Multiple runs are done if the
stringency argument is positive. The stringency criterion is satisfied if the
best trade has been found again (in different runs) stringency times.

For example, suppose stringency is 1. After each run we have the best
found so far. If the result of the new run is the same (the same assets traded, the
same number of units traded) as the best found previously, then the stringency
criterion is met and the process stops. If stringency were 2, then it would take
three runs with the same result to end the process. The best runs need not be
found consecutively.

When stringency is positive, there are three types of runs:

• initial runs

• final runs

• non-convergence run

Initial runs perform the optimization as stated. The number of initial runs is
determined by the runs.init control argument.

If the stringency hasn’t been satisfied in the initial phase, then the final runs
are started. The key difference is that only assets that were involved in trades
in the initial phase are eligible to trade in this phase. The number of final runs
is controlled by runs.final.

If the stringency is still not satisfied at the end of the final runs, then one
more run is done. This run starts with the best solution found in any of the
previous runs. The restriction to trading as in the final runs remains in place.
The maximum number of iterations allowed in this run is a multiple of the
maximum number of iterations for the other runs—that multiple is given by the
nonconverge.mult control argument.

118 CHAPTER 11. ADJUSTING OPTIMIZATION SPEED AND QUALITY

11.4 Improving Quality

The easiest—and generally most effective—approach to improving quality is to
set stringency to 1.

You can improve quality by increasing iterations.max and fail.iter.
If the converged component of the result is FALSE, then it is probably the

case that the best solution has not been found. You can restart the optimization
from where it left off:

> opt1 <- trade.optimizer(prices, varian, ...)

> opt2 <- trade.optimizer(prices, varian,

+ start.sol=opt1, ...)

For more thorough optimization, increase iterations.max and fail.iter:

> opt3 <- trade.optimizer(prices, varian, start.sol=opt1,

+ iterations=100, fail=10, ...)

Another way of doing this same thing would be:

> opt3 <- update(opt1, start.sol=opt1,iterations=100,

+ fail=10)

S code note

If an object is a list and has a component named call (that is an image of
the command that created the object), then the update function will recom-
pute the call and change any arguments that are given in the call to update.
The update function can be used on the results of trade.optimizer and
random.portfolio.

A natural thing to do if you want a quality solution is to increase the maxi-
mum number of iterations to something like 100 or 1000. That is not the best
approach. For very large problems 100 iterations might be useful, but increasing
the number of runs and increasing the number of iterations slightly is usually a
better approach.

11.5 Testing Optimization Quality

The optimization algorithm is random (pseudo-random to be technical). You get
a consistent answer for any particular problem because the same random seed
is used by default. You can get different paths (and hence probably different
answers) by setting the seed argument to NULL. One way of getting a new
optimization is:

new.optobj <- update(orig.optobj, seed=NULL)

You can create a list of a number of solutions for comparison with commands
similar to:

11.5. TESTING OPTIMIZATION QUALITY 119

> opt.list <- vector("list", 10)

> for(i in 1:10) opt.list[[i]] <- update(orig.opt, seed=NULL)

> summary(unlist(lapply(opt.list, function(x)

+ x$results["objective"])), digits=7)

> summary(unlist(lapply(opt.list, function(x)

+ trade.distance(x, orig.opt))), digits=7)

Here we’ve created an empty list, and filled it up with solutions to the prob-
lem. Finally we looked at the distribution of the achieved objective, and the
distribution of trade distances from the original solution.

S code note

Some care needs to be used when doing seed=NULL in a call to update. If seed
was used in the original call (to trade.optimizer), then the result will be to
use the default value of seed (which is fixed) rather than creating a new random
seed.

The update function creates its own call to the function and then evaluates
that call. Saying arg=NULL removes arg from the call if it was in the original
call.

120 CHAPTER 11. ADJUSTING OPTIMIZATION SPEED AND QUALITY

Chapter 12

Utility

Utility is ignored in random portfolios (but see Section 2.7), however it is central
to optimization.

The descriptions of the utilities use a few entities:

• The weight vector w.

• The vector of expected returns α.

• The variance matrix V.

• The transaction costs C(w). This includes the multiplication of the com-
puted costs by ucost.

In long-only portfolios all of the elements of w are non-negative and they sum
to 1. In long-short portfolios the weights may be negative, and it is the absolute
values of the weights that sum to 1—that is, the weight of an asset is its value
in the portfolio divided by the gross value of the portfolio.

C (w) is actually an abuse of notation for the transaction cost. Transaction
cost obviously depends on the existing portfolio. Cost is not strictly a function
of weight unless the gross value for the portfolio is constant.

12.1 Maximum Information Ratio

This utility (which is the default if there is both a variance and expected returns)
is specified with the argument:

utility = "information ratio"

or

utility = "exocost information ratio"

The generic information ratio problem is to maximize:

αT w√
wT V w

121

122 CHAPTER 12. UTILITY

over all vectors w that satisfy the constraints.

This inherently assumes zero costs. There are two approaches (at least) to
incorporating costs. The first is to subtract the trading cost from the expected
value:

αT w − C(w)√
wT V w

This is what you get with:

utility = "information ratio"

The second approach is to have a separate term for costs:

αT w√
wT V w

− C(w)

You get this second version with:

utility = "exocost information ratio"

Example

We look at an example of a utility computation:

> opt.utilexamp

...

$results

objective negutil cost penalty

-0.032086057 -0.032086057 0.004603756 0.000000000

$objective.utility

[1] "information ratio, ucost = 1279"

$alpha.values

A0

6.281538

$var.values

V0

150.2766

...

Now we compute the utility by hand as:

> (6.281538 - 1279 * 0.004603756) / sqrt(150.2766)

[1] 0.03208602

The sign is different from negutil because we are computing the utility and
not the negative utility. The last digit is different because we computed with
rounded values—that is the sort of numerical error that we would expect. The
key thing is to notice that the C function in the formula for the utility is equal
to the cost element of the results component times the value of ucost.

12.2. MEAN-VARIANCE UTILITY 123

12.2 Mean-Variance Utility

Mean-variance utility is invoked with:

utility = "mean-variance"

With mean-variance utility we maximize:

αT w − γwT V w − C(w)

where γ is the risk aversion parameter and w satisfies all of the constraints.

Many implementations have a one-half in the variance term, meaning that
the risk aversion parameter in those cases is a factor of two different than here.
Also in some optimizers the parameter used divides the variance rather than
multiplies it—in which case it is a risk tolerance parameter.

The mean-variance risk aversion parameter is invariant to annualization.
As long as both expected.return and variance are for the same time scale,
it doesn’t matter what time scale it is. However risk aversion is affected when
expected.return and variance are for returns that are put into percent. When
percent returns are used, the risk aversion is divided by 100.

[Kallberg and Ziemba, 1983] classify risk aversion greater than 3 as very risk
averse, 1 to 2 as moderate risk aversion, and less than 1 as risky—these num-
bers would be divided by 100 for data representing percent returns. Some
additional sense of suitable values for the risk aversion parameter may be found
in [Burns, 2003b].

All of the above are focused on long-only portfolios. In long-short portfolios
the variance is a smaller quantity so it takes a larger risk aversion to have the
same effect. In general risk aversion is likely to be larger in long-short situations
than for long-only.

12.3 Mean-Volatility Utility

Mean-volatility utility is invoked with:

utility = "mean-volatility"

With mean-volatility utility we maximize:

αT w − ζ
√

wT V w − C(w)

where ζ is the risk aversion parameter and w satisfies all of the constraints.
The mean-volatility risk aversion does depend on annualization. For example

the risk aversion for annual data is
√

252 times the risk aversion for daily data.
But volatility aversion is invariant to whether or not the data are in percent.

12.4 Minimum Variance

Minimum variance utility is specified with:

utility = "minimum variance"

124 CHAPTER 12. UTILITY

The minimum variance utility minimizes:

wT V w + C(w)

over the w that satisfy the constraints.

This utility is used when:

• The utility argument is set to be "minimum variance".

• The expected.return argument is not given (or is NULL) and distance is
not being minimized.

• The utility is either mean-variance or mean-volatility and risk.aversion

is Inf.

12.5 Maximum Expected Return

The maximum expected return utility is specified via:

utility = "maximum return"

With this utility we maximize:

αT w − C(w)

where w must satisfy the constraints.

This utility is used when:

• The utility argument is set to be "maximum return".

• The variance argument is not given (or is NULL) and distance is not being
minimized.

• The utility is mean-variance or mean-volatility and risk.aversion is 0.

In the last of these items, the stated utility in the output remains mean-variance
or mean-volatility, but a look at the definitions shows that it is really maximum
expected return.

12.6 Minimum Distance

This is specified with:

utility = "distance"

This minimizes the distance from the portfolio to the specified target portfolio
plus the trading costs. More details are found in Section 5.4.

12.7 Going Farther

• Chapter 13 discusses utilities where multiple variances and/or expected
return vectors are given.

Chapter 13

Advanced Features

This chapter will be of use if you have or want:

• Multiple variances

• Multiple expected return vectors

• Multiple benchmarks

• Compact variances (seldom recommended)

If you merely want constraints on multiple benchmarks, that is easy and is
discussed on page 57.

13.1 Multiplicity

The computation that is performed is really controlled by three entities: the
alpha table, the variance table and the utility table. In the standard case
of no multiplicity, these entities can safely be ignored. When you do have
multiplicity, then understanding what these objects are saying is a good idea.
If you understand them, then you can check to make sure that it is doing what
you want done. If it isn’t doing what you want automatically, then you can tell
it to do what you do want.

If you are generating random portfolios but not optimizing, then you can
skip parts of this chapter. The recommended route in this case is:

• Section 13.2 Alpha and Variance Tables

• Section 13.3 Variance Constraints

• Section 13.4 Expected Return Constraints

Table 13.1 describes arguments to trade.optimizer (and random.portfolio)
that are useful when dealing with multiplicity. All of these arguments have
defaults—you only need to give values for these if the default behavior is not
what you want.

125

126 CHAPTER 13. ADVANCED FEATURES

Table 13.1: Arguments for multiple variances and expected returns.
Argument Description

vtable gives the variance-benchmark combinations
atable gives the expected return-benchmark combinations
utable describes all the combinations to get utilities
quantile states which quantile of the multiple objectives to use
dest.wt gives weights to the multiple objectives if desired

13.2 Alpha and Variance Tables

The purpose of the alpha table is to state what combinations of expected return
vectors and benchmarks will be used in the problem. Likewise the variance table
identifies variance-benchmark combinations that will be used.

An alpha table is a matrix with two rows and an arbitrary number of
columns. In simple cases the alpha table will look like:

> optobj$atable

A0

alpha 0

benchmark -1

attr(,"benchmarks")

[1] ""

Or if a benchmark is given, it will look something like:

> optobj$atable

A0 -- spx

alpha 0

benchmark 500

attr(,"benchmarks")

[1] "spx"

The first row gives the zero-based index of the expected return. If there is only
one set of expected returns, then this is always zero. If there are no expected
returns, this is negative one.

The second row gives the zero-based index of the corresponding benchmark.
A negative number in this row means there is no benchmark.

There is a benchmarks attribute which is a character representation of the
benchmarks. When you are passing an object in as the atable argument,
the second row of the matrix itself is overwritten with the information in the
benchmarks attribute (which must be present).

Variance tables are essentially the same as alpha tables. The first row, of
course, corresponds to variances rather than alphas. The other change is that
there is a third row which states if this combination is only used in the utility
(value 1) or if it is used in constraints as well (value 0). This information is used
to more efficiently generate random portfolios. As with alpha tables when you
pass an object in as the vtable argument, the second row is overwritten with
the information given in the benchmarks attribute of the object.

13.3. VARIANCE CONSTRAINTS 127

Here is an example of the alpha table and variance table from an opti-
mization that has two variance matrices, three expected return vectors, and no
benchmarks:

> opt1$atable

A0 A1 A2

alpha 0 1 2

benchmark -1 -1 -1

attr(,"benchmarks")

[1] "" "" ""

> opt1$vtable

V0 V1

variance 0 1

benchmark -1 -1

utility.only 1 1

attr(,"benchmarks")

[1] "" ""

Here are the tables from an optimization with the same variance, one expected
return but with two benchmarks:

> opt2$atable

A0 -- Ind1 A0 -- spx

alpha 0 0

benchmark 8 9

attr(,"benchmarks")

[1] "Ind1" "spx"

> opt2$vtable

V0 -- Ind1 V1 -- Ind1 V0 -- spx V0 -- spx

variance 0 1 0 1

benchmark 8 8 9 9

utility.only 1 1 1 1

attr(,"benchmarks")

[1] "Ind1" "Ind1" "spx" "spx"

note

The values in the alpha table, variance table and utility table are zero-based
because these entities are sucked directly into C where indexing is zero-based
rather than one-based as in the S language.

13.3 Variance Constraints

This section discusses the argument:

• var.constraint

Simple use of this argument is discussed on page 127. This argument also
handles problems that are too complex for the bench.constraint argument.

The var.constraint argument can be:

128 CHAPTER 13. ADVANCED FEATURES

• a plain vector (with one or more values) with or without names

• a one–column matrix with or without row names

• a two-column matrix with or without row names

Plain vectors are equivalent to one-column matrices. One-column matrices are
equivalent to two-column matrices where the first column is all zeros.

The names on vectors or row names of matrices specify the zero-based index
of the column of the variance table. When there are no names, then the first
column(s) are implied (in order).

So all six of the following are specifying the same constraints:

var.constraint = vc.vec

var.constraint = vc.1mat

var.constraint = vc.2mat

var.constraint = vc.vec.nam

var.constraint = vc.1mat.nam

var.constraint = vc.2mat.nam

where:

> vc.vec

[1] 2.4 1.5

> vc.1mat

[,1]

[1,] 2.4

[2,] 1.5

> vc.2mat

[,1] [,2]

[1,] 0 2.4

[2,] 0 1.5

> vc.vec.nam

0 1

2.4 1.5

> vc.1mat.nam

[,1]

0 2.4

1 1.5

> vc.2mat.nam

[,1] [,2]

0 0 2.4

1 0 1.5

All of these are saying the variance-benchmark combination in the first column
of the variance table has an upper bound of 2.4 and the variance-benchmark
combination in the second vtable column is to be no more than 1.5.

If you were to give the equivalent of vc.vec.nam directly, you would do:

var.constraint = c(’0’=2.4, ’1’=1.5)

A very similar command means something quite different:

13.4. EXPECTED RETURN CONSTRAINTS 129

var.constraint = cbind(2.4, 1.5)

means that the (first) variance is constrained to be at most 1.5 but no less than
2.4. (In this case you will get an error, but you can not depend on getting an
error when you confuse the direction of matrices.) Note that if the numbers
were reversed, the command above would be sensible—maybe not what you
want, but sensible.

Two-column matrices give lower bounds as well as upper bounds on the
variance. Lower bounds are most likely to be useful in generating random
portfolios, but are sometimes of interest in optimization as well.

Consider the matrix:

> varcon.m1 <- rbind(c(1.2, 1.4), c(1.3, 1.5))

> varcon.m1

[,1] [,2]

[1,] 1.2 1.4

[2,] 1.3 1.5

Suppose that there are three columns in vtable (perhaps the variance argu-
ment is a three-dimensional array with 3 slices in the third dimension). Then
the command:

var.constraint = varcon.m1

would say that the first variance-benchmark combination is restricted to be
between 1.2 and 1.4, the second variance-benchmark is restricted to be between
1.3 and 1.5, and the third is unrestricted.

Now let’s add some row names.

> varcon.m2 <- varcon.m1

> dimnames(varcon.m2) <- list(c(2, 0), NULL)

> varcon.m2

[,1] [,2]

2 1.2 1.4

0 1.3 1.5

The command:

var.constraint = varcon.m2

says that the third variance-benchmark is to be between 1.2 and 1.4, the first
variance-benchmark is restricted to be between 1.3 and 1.5, and the second
variance-benchmark is unconstrained.

Some examples with multiple variances can be found on page 135.

13.4 Expected Return Constraints

This section discusses the argument:

• alpha.constraint

130 CHAPTER 13. ADVANCED FEATURES

Simple use of this argument is discussed on page 55.

Use of this argument is analogous to the advanced use of var.constraint
(page 127) except that a one-column matrix is a lower bound rather than an
upper bound, and indices refer to expected return-benchmark combinations
(columns of atable) rather than to variance-benchmark combinations.

So for instance:

alpha.constraint = c("1"=5.6, "0"=2.3)

is equivalent to

alpha.constraint = ac.2mat.nam

or

alpha.constraint = ac.2mat

where:

> ac.2mat.nam

[,1] [,2]

1 5.6 Inf

0 2.3 Inf

> ac.2mat

[,1] [,2]

[1,] 2.3 Inf

[2,] 5.6 Inf

13.5 Multiple Utilities

This section does not pertain to generating random portfolios (unless a utility
constraint is imposed).

When there are multiple columns in the alpha or variance tables, there are
usually multiple utilities for any given trade. In order to do an optimization,
we need to combine that set of numbers into just one number.

A common approach is to get a min-max solution. This process consists of
always picking out the worst answer for each trade—we then try to get the best
of these worst values.

Another approach would be to take the median of the values for a trade.
This represents an optimistic attitude, while min-max is very pessimistic—min-
max assumes that nature will do its worst against us. The quantile argument
allows us to choose either of these, or something in between. The useful range
of values for quantile is 0.5 (the median) to 1 (the maximum—yielding the
min-max solution).

Each of the individual utilities for a trade is called a “destination”. What
goes into a destination is under user control. For example, if some destinations
are deemed to be more important than others, they can be given more weight
with the dest.wt argument.

13.6. UTILITY TABLES 131

There are two sorts of destination weight. Each utility has a weight within
its destination. The within destination weights can be used to create a weighted
average of utilities within a single destination; they can also be used to modify
the utility as demonstrated in the dual benchmark example which starts on page
132.

The weights in the dest.wt argument, on the other hand, are weights among
the destinations which are used along with the quantile argument to control
the selection of the objective from among the destinations. For example in
scenario analysis (see page 138) dest.wt could be the probability assigned to
each scenario.

note

The answer when dest.wt is not given is, in general, slightly different than
when dest.wt is given and all of the weights are equal.

The actual problem that is done is mostly specified by the utility table.

13.6 Utility Tables

The utility table is a matrix that gives the combinations of variances, expected
returns and benchmarks that are to be used and what to do with them. Here is
the utility table from our example of two variances and three expected returns:

> opt1$utable

[,1] [,2] [,3] [,4] [,5] [,6]

alpha.spot 0 1 2 0 1 2

variance.spot 0 0 0 1 1 1

destination 0 1 2 3 4 5

opt.utility 1 1 1 1 1 1

risk.aversion 1 1 1 1 1 1

wt.in.destination 1 1 1 1 1 1

The first row is the expected return—this is the zero-based index of the columns
of atable. That is, it indicates a particular expected return-benchmark combi-
nation. (But note that this is the zero-based location of the distance for columns
corresponding to distance utilities.)

The second row is similar to the first except that it is columns of the vtable.
The third row is the zero-based index of the destination for the utility with

this combination of alpha and variance. The utility for the combination is
computed, multiplied by its weight in the destination (the sixth row of the
utility table) and added to whatever is there. That is, a destination may hold
a weighted average of utilities. If a destination is a negative number, the utility
is not placed into a destination—these are combinations that are presumably
to be used in a constraint. There must be at least one zero in the destination
row, and the destinations must be numbered from zero upwards with no integers
skipped.

The fourth row is an indicator for the type of utility to be performed. The
allowable codes are given in Table 13.2.

132 CHAPTER 13. ADVANCED FEATURES

Table 13.2: Utilities codes for the utility table.

Code Meaning

0 mean-variance
1 information ratio
2 exocost information ratio
3 minimum variance
4 maximum return
5 mean-volatility
6 distance

The fifth row holds the risk aversion parameter for the cases where it is
used—the value is ignored in the other cases. When the utable argument is
given, then the risk aversion in the utility table is used rather than using the
value of the risk.aversion argument unless force.risk.aver is set to TRUE.

The example utility table above specifies that six utilities are to be computed
and each put into a different destination. Each combination of expected return
and variance is used, and the information ratio is the utility in all cases.

13.7 Multiplicity Examples

This section provides a few examples of using multiple variances, expected re-
turns and benchmarks.

Dual Benchmarks

Dual benchmarks can be used, for example, to incorporate predictions about
a future rebalancing of the benchmark. Due to the relative movements that
have occurred since the last rebalance, we may have predictions of what assets
will enter and exit the benchmark and with what weight. The portfolio can be
optimized against both benchmarks—this allows the portfolio to be rebalanced
to some extent against the new benchmark while still having protection relative
to the current one. This can mean a cheaper rebalance if it is done before others
do their rebalancing.

If our benchmark is spx and our prediction of the post-rebalance benchmark
is newspx, then minimizing variance relative to the two benchmarks can be done
as:

> opts1 <- trade.optimizer(prices, varian,

+ long.only=TRUE, gross.value=1e6, existing=cur.port,

+ utility = "minimum variance",

+ benchmark=c("spx", "newspx"), quantile=1)

Often a min-max solution is found for dual benchmarks. To get such a solution,
set quantile to 1. The min-max solution says that we want to minimize the
worst tracking error. It is typical (though not always true) that the utility in
the optimal solution is the same for both benchmarks:

13.7. MULTIPLICITY EXAMPLES 133

> sqrt(252 * opts1$var.values)

V0 -- spx V0 -- newspx

[1] 0.009029673 0.009029442

> opts1$utility.values

[1] 3.235515e-07 3.235350e-07

In this example the tracking errors are the same at 90 basis points, and the
utilities are equal as well.

A reasonable complaint about this optimization is that it treats both bench-
marks equally even though the new benchmark is speculative while the current
one is known precisely. It is probably more reasonable to insist on a smaller
tracking error against the current benchmark.

A difference in the tracking errors is easily achieved with the addition of an-
other argument. The utility table needs to be changed slightly from its default.
So we recover the utility table from the original optimization, make the change,
then do a new optimization:

> utab1 <- opts1$utable

> utab1

[,1] [,2]

alpha.spot 0 0

variance.spot 0 1

destination 0 1

opt.utility 0 0

risk.aversion 1 1

wt.in.destination 1 1

> utab1[6,1] <- 1.4

> utab1

[,1] [,2]

alpha.spot 0.0 0

variance.spot 0.0 1

destination 0.0 1

opt.utility 0.0 0

risk.aversion 1.0 1

wt.in.destination 1.4 1

All that we have done is change the weight-in-destination value for the first
(current) benchmark from 1 to 1.4. Now the optimization yields:

> opts2 <- trade.optimizer(prices, varian,

+ long.only=TRUE, gross.value=1e6, existing=cur.port,

+ utility = "minimum variance",

+ benchmark=c("spx", "newspx"), quantile=1,

+ utable=utab1)

> sqrt(252 * opts2$var.val)

V0 -- spx V0 -- newspx

[1] 0.008227913 0.009735447

> opts2$utility.val

[1] 3.761031e-07 3.761069e-07

The utility values are still equal, but now the utility represents something dif-
ferent for the current benchmark than for the new benchmark, so the tracking

134 CHAPTER 13. ADVANCED FEATURES

errors are different—now they are 82 basis points for the current benchmark
and 97 for the new benchmark.

There is not a limit on the number of benchmarks that you can use—just
add the names to the vector given as the benchmark argument.

If you have an active portfolio, you may want to put on constraints relative
to each benchmark. This is done precisely the same as with a single benchmark
constraint. Adding a second benchmark constraint is just like adding any other
constraint—it does not create multiple utilities. An example is given on page
75.

Benchmark-relative Utility and Absolute Variance Constraint

We saw (on page 74) that it is easy to have a utility in absolute terms on
the portfolio with a benchmark constraint. The reverse problem—benchmark-
relative utility with a constraint on portfolio volatility—is just as easy to state,
but not as easy to do.

We need to create a variance table to pass in as the vtable argument. It
needs a column with the benchmark to use in the utility and a second column
without the benchmark for the constraint. We can do this with:

> vtab.buav <- rbind(c(0,0), c(0,-1), c(1,0))

> attr(vtab.buav, "benchmarks") <- c("spx", "")

We will also need to create a utility table, but in this case it is simple enough to
create on the fly within the call to the optimizer. Our optimizer call can look
something like:

> opt.buav <- trade.optimizer(prices, varian,

+ expected.return=alphas, benchmark=’spx’,

+ var.constraint=c(’1’=100), vtable=vtab.buav,

+ utable=rep(c(0,1), c(3,3)), ...)

We can check the tables that are created to see if it is doing what we want.

> opt.buav$atable

A0 -- spx

alpha 0

benchmark 500

attr(,"benchmarks")

[1] "spx"

> opt.buav$vtable

V0 -- spx V0

variance 0 0

benchmark 500 -1

utility.only 1 0

attr(,"benchmarks")

[1] "spx" ""

> opt.buav$utable

[,1]

alpha.spot 0

variance.spot 0

13.7. MULTIPLICITY EXAMPLES 135

destination 0

opt.utility 1

risk.aversion 1

wt.in.destination 1

The utility table we created says to maximize the information ratio. We need
to put a name on the object given as the variance constraint because we want
to constrain the variance-benchmark combination given in the second column
of the variance table (not the first column).

Rival Variance Forecasts

If you have two or more variance matrices, you can use these in a single op-
timization. For example if you have a statistical factor model, a fundamental
factor model and a macroeconomic factor model, you could use all three in the
optimization. Since these are created using different sources of information, it
is reasonable to suppose that results may be better by using more than one of
them.

The first task is to create a suitable variance object, which will (almost
always) be a three-dimensional array. We can use the threeDarr function from
the BurStFin package to do this:

> varmult <- threeDarr(vstat, vfund, vmacro,

+ slicenames=c(’stat’, ’fundamental’, ’macro’))

S code note

A three-dimensional array is a generalization of a matrix—instead of a dim
attribute that has length 2, it has a length 3 dim. Likewise, the dimnames is a
list that has three components.

We need each of the variance matrices to be in a slice of the third dimension.

You need to decide which quantile to optimize. The best quantile to use
probably depends on how the variance matrices relate to each other and on the
type of optimization that you are performing. Once this decision is made, the
optimization is performed as with a single variance:

> opts.m1 <- trade.optimizer(prices, varmult,

+ long.only=TRUE, gross.value=1e6, expected.return=alphas,

+ bench.constrain = c(spx=.05^2/252), quantile=.7)

This command is maximizing the information ratio with a tracking error con-
straint as is done on page 74. In this case the tracking error is constrained
relative to each of the variance matrices. The information ratio that is being
optimized is the 70% quantile of the set of information ratios using each of the
variances.

If you are doing a variance constraint, for instance maximizing the informa-
tion ratio in a long-short portfolio as on page 83, then the approach is slightly
different. You need to make the variance constraints argument the proper length
yourself:

136 CHAPTER 13. ADVANCED FEATURES

> opts.m2 <- trade.optimizer(prices, varian,

+ expected.return=alphas, gross.value=1e6,

+ net.val=c(-1e4, 2e4), ntrade=55, max.weight=.05,

+ var.constraint=rep(.04^2/252, 3))

If the value given as the variance constraint weren’t replicated, then only the
first variance would be constrained.

The var.constraint argument is the more general. Benchmark constraints
actually create variance constraints—the bench.constraint argument only ex-
ists for convenience. (When more than one variance is given, bench.constraint
puts the constraint on each of the variances.) More control can be gained over
variance constraints by putting names on the vector given. The names need to
be the zero-based index of the columns of the variance table (see page 127). For
example to constrain the first variance to a volatility of 4% and the third to a
volatility of 5%, the command would be:

> opts.m3 <- trade.optimizer(prices, varian,

+ expected.ret=alphas, gross.val=1e6,

+ net.val=c(-1e4, 2e4), ntrade=55, max.weight=.05,

+ var.constraint=c("0"=.04^2/252, "2"=.05^2/252))

S code note

The names given inside the c function need to be put in quotes because they
are not proper names of S objects. S would try to interpret them as numbers if
they were not in quotes.

If any element of the var.constraint argument is named, then they all
need to be. When there are no names, the columns of the variance table are
used in order.

A standard use of multiple variances is to optimize with one, and check
the tracking error or volatility with the other. One good reason to evaluate the
solution on a variance not used in the optimization is because of the bias created
in the optimization process—the tracking error or volatility that is achieved
in the optimization is a downwardly biased estimate of what will be realized.
Using multiple variances in the optimization will reduce the amount of bias in
any particular variance matrix, though some bias will still remain.

Multiple Time Periods

You may have forecasts for multiple time periods. For example, you may have
GARCH forecasts of the variance matrix for several different time horizons. You
want the portfolio to do well at all of the time scales. A key issue is how to
weight the different time scales. You may want different risk profiles at different
time scales—for instance, expected returns may be given relatively more weight
versus risk for short time horizons.

Credit Risk

The variance matrices that we have talked about have all been measures of
market risk. There are other sources of risk—credit risk, for example—that

13.7. MULTIPLICITY EXAMPLES 137

could be included in an optimization. For more on credit risk, see for example
[Gupton et al., 1997]. While we’ll speak of credit risk here, keep in mind that
other forms of risk could be used instead or in addition.

Suppose that we have var.market and var.credit that represent the two
types of risk. While it may be possible to scale the credit risk so that it is com-
parable to the market risk, it may be easier to accept that they are different. If
the two forms of risk are not comparable, then you can perform the optimization
with the market risk as you normally would and put a constraint on the credit
risk.

When deciding how to constrain the credit risk, the first thing to do is
explore its limits. One end of the range is when credit risk is ignored entirely
in the optimization, the other end is when the credit risk is minimized with no
concern for the market risk.

> op.cred0 <- trade.optimizer(prices, var.market, ...)

> trade.optimizer(prices, var.credit, ...,

+ funeval=0, start.sol=op.cred0)$var.value

[1] 26.02844

> trade.optimizer(prices, var.credit,

+ utility="minimum variance", ...)$var.value

[1] 11.92467

So the range of interest is about 12 to 26. If we decided to constrain the credit
risk to 18, then we would do:

> var.mult <- threeDarr(var.market,var.credit,

+ slicenames=c(’market’, ’credit’))

> op.cred1 <- trade.optimizer(prices, var.mult, ...,

+ var.constraint=c("1"=18))

The first command creates the three dimensional array containing the two types
of risk. The second command does the optimization. The variance constraint is
a named vector where the name is the zero-based index to the third dimension
of the variance array. In this case the name is “1” because we are constraining
the second variance.

But op.cred1 is not the optimization that we are aiming for. The credit risk
is used in the utility as well as being constrained. We need to tell the optimizer
not to use credit risk in the utility by passing in a utable argument. We can
make a simple change to the utility table from the optimization we’ve just done.

> op.cred1$utable

[,1] [,2]

alpha.spot 0 0

variance.spot 0 1

destination 0 1

opt.objective 1 1

risk.aversion 1 1

wt.in.destination 1 1

> uticred <- op.cred1$utable

> uticred[3,2] <- -1

> uticred

138 CHAPTER 13. ADVANCED FEATURES

[,1] [,2]

alpha.spot 0 0

variance.spot 0 1

destination 0 -1

opt.objective 1 1

risk.aversion 1 1

wt.in.destination 1 1

>

> op.cred2 <- trade.optimizer(prices, var.mult, ...,

+ var.constraint=c("1"=18), utable=uticred)

The change we made was to say that the column with credit risk in it shouldn’t
go into a destination. One indication that we are doing it right is that the
utility.values component of op.cred2 has length one, while it is length two
for op.cred1. Since we only want one variance in the utility, the utility that we
want will have length one.

Multiple Scenarios

Scenario analysis creates some hypotheses about what might happen in the
future, and then tries to pick the best course of action. The assumption is that
the future will look like one of the scenarios, or perhaps some combination of
scenarios.

Our first step is to create some data. We will create a “medium” scenario,
a “crash” scenario and a “prosperous” scenario. (The probability that these
numbers are reasonable is close to zero.)

> anam4 <- c("equities", "bonds", "commodities", "cash")

> acor.medium <- matrix(c(1, .2, .1, .2, 1, .1, .1, .1, 1),

+ 3, 3)

> acor.medium

equities bonds commodities

equities 1.0 0.2 0.1

bonds 0.2 1.0 0.1

commodities 0.1 0.1 1.0

> acor.crash <- matrix(c(1, -.3, .3, -.3, 1, -.2, .3,

+ -.2, 1), 3, 3)

> acor.crash

[,1] [,2] [,3]

[1,] 1.0 -0.3 0.3

[2,] -0.3 1.0 -0.2

[3,] 0.3 -0.2 1.0

> acor.prosper <- matrix(c(1, .4, .3, .4, 1, .2, .3,

+ .2, 1), 3, 3)

> acor.prosper

[,1] [,2] [,3]

[1,] 1.0 0.4 0.3

[2,] 0.4 1.0 0.2

[3,] 0.3 0.2 1.0

13.7. MULTIPLICITY EXAMPLES 139

> avol.medium <- c(20, 8, 12)

> avol.crash <- c(35, 16, 20)

> avol.prosper <- c(15, 5, 7)

> avar.medium <- rbind(cbind(t(acor.medium * avol.medium) *

+ avol.medium, 0), 0)

> avar.crash <- rbind(cbind(t(acor.crash * avol.crash) *

+ avol.crash, 0), 0)

S code note

The last command creating avar.crash does several things at once. First (in the
center of the command) it multiplies the correlation matrix times the volatility
vector which multiplies each row of the correlation matrix by the corresponding
volatility. Then it transposes the matrix and multiplies again by the volatility
vector—this is now multiplying what originally were the columns of the correla-
tion matrix by their corresponding volatilities. Then it binds on a column of all
zeros (for cash), and finally binds on a row of all zeros. Below you can see the
result of all this manipulation once the asset names are put onto the variance
matrix.

> avar.prosper <- rbind(cbind(t(acor.prosper * avol.prosper)

+ * avol.prosper, 0), 0)

> dimnames(avar.medium) <- list(anam4, anam4)

> dimnames(avar.crash) <- list(anam4, anam4)

> dimnames(avar.prosper) <- list(anam4, anam4)

> avar.medium

equities bonds commodities cash

equities 400 32.0 24.0 0

bonds 32 64.0 9.6 0

commodities 24 9.6 144.0 0

cash 0 0.0 0.0 0

> avar.crash

equities bonds commodities cash

equities 1225 -168 210 0

bonds -168 256 -64 0

commodities 210 -64 400 0

cash 0 0 0 0

> avar.prosper

equities bonds commodities cash

equities 225.0 30 31.5 0

bonds 30.0 25 7.0 0

commodities 31.5 7 49.0 0

cash 0.0 0 0.0 0

> aret.medium <- c(8, 4, 5, 3)

> aret.crash <- c(-20, 6, -9, 3)

> aret.prosper <- c(25, 3.5, 8, 3)

> names(aret.medium) <- anam4

> names(aret.crash) <- anam4

> names(aret.prosper) <- anam4

140 CHAPTER 13. ADVANCED FEATURES

> aret.crash

equities bonds commodities cash

-20 6 -9 3

> aret.prosper

equities bonds commodities cash

25.0 3.5 8.0 3.0

Since we are doing asset allocation, there are no prices for the assets and we
want the answer to be the weights of the assets. Hence we want to create a
“price” vector that is all ones and set the gross value to a useful value.

> aprice <- rep(1, 4)

> names(aprice) <- anam4

> aprice

equities bonds commodities cash

1 1 1 1

> ten.thou <- 10000 + c(-.5, .5)

> op.medium <- trade.optimizer(aprice, avar.medium,

+ aret.medium, gross.value=ten.thou, long.only=TRUE,

+ utility="mean-variance", risk.aversion=.02)

> op.medium$new.portfolio / 100

equities bonds commodities cash

27.86 20.83 28.69 22.62

Above we have performed a mean-variance optimization with the “medium”
data, and then shown the weights of the resulting portfolio in percent. (The
variance matrix is not positive definite but the optimizer doesn’t care—note,
though, that no more than one zero variance should be in a single variance
matrix.)

In order to perform simultaneous optimization, we need to put the three vari-
ance matrices into a three-dimensional array, and the expected return vectors
into a matrix:

> avar.all <- threeDarr(avar.crash, avar.medium, avar.prosper,

+ slicenames=c(’crash’, ’medium’, ’prosper’))

S code note

A three-dimensional array is a generalization of a matrix—instead of a dim

attribute that has length 2, it has a length 3 dim. Likewise, the dimnames is a
list that has three components.

We need each of the variance matrices to be in a slice of the third dimension.

> aret.all <- cbind(crash=aret.crash, medium=aret.medium,

+ prosper=aret.prosper)

> aret.all

crash medium prosper

equities -20 8 25.0

13.7. MULTIPLICITY EXAMPLES 141

bonds 6 4 3.5

commodities -9 5 8.0

cash 3 3 3.0

Min-Max Solution

The most common approach to simultaneous optimization is to maximize the
minimum utility—also known as Pareto optimality. To clarify: each allocation
will produce a utility for each scenario, the optimizer only pays attention to the
worst utility for an allocation (with no regard to which scenario produces that
utility); it then finds the allocation that does best with respect to the worst
utility. The aim, then, is to never do really badly.

Before we do the actual optimization, we need to do some ground work.

> op.0 <- trade.optimizer(aprice, avar.all, aret.all,

+ gross.value=ten.thou, long.only=TRUE,

+ utility="mean-variance", iterations=0)

(warning message omitted)

> utab3 <- op.0$utable

> utab3

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

alpha.spot 0 1 2 0 1 2 0 1 2

variance.spot 0 0 0 1 1 1 2 2 2

destination 0 1 2 3 4 5 6 7 8

opt.utility 0 0 0 0 0 0 0 0 0

risk.aversion 1 1 1 1 1 1 1 1 1

wt.in.destination 1 1 1 1 1 1 1 1 1

The default behavior is to get all of the combinations of expected returns and
variances—in this case we have three of each so there are 9 combinations. For
our scenario analysis, though, we want only the combinations where the ex-
pected returns and the variances match—three combinations. In order to get
the behavior that we want, we need to provide a suitable matrix as the utable

argument. We could build a matrix from scratch, but it is slightly easier to
start with the one that is wrong.

There are three changes that we need to make to this matrix. We need to
select the three columns that we want, we need to reset the destinations so that
they are numbered from zero through one less than the number of combinations,
and we should specify the risk aversion parameter that we want.

> utab3 <- utab3[, c(1, 5, 9)]

> utab3["destination",] <- 0:2

> utab3["risk.aversion",] <- 0.02

> utab3

[,1] [,2] [,3]

alpha.spot 0.00 1.00 2.00

variance.spot 0.00 1.00 2.00

destination 0.00 1.00 2.00

opt.utility 0.00 0.00 0.00

risk.aversion 0.02 0.02 0.02

wt.in.destination 1.00 1.00 1.00

142 CHAPTER 13. ADVANCED FEATURES

At this point we are ready to do the actual optimization. In addition to needing
the utable argument, the quantile argument needs to be 1 in order to get a
min-max solution:

> op.minmax <- trade.optimizer(aprice, avar.all, aret.all,

+ gross.value=ten.thou, long.only=TRUE,

+ utility="mean-variance", utable=utab3, quantile=1)

> op.minmax$new.portfolio / 100

equities bonds cash

0.91 34.82 64.27

A look at the utility values shows typical behavior of a min-max solution—the
solution has the same utility for two of the scenarios.

General Simultaneous Optimization

Min-max optimization protects against the very worst outcome. However, it
may really be buying too much insurance. We can change the quantile ar-
gument to a number that is less than 1 (but only numbers that are at least
one-half are sensible):

> op.q7 <- trade.optimizer(aprice, avar.all, aret.all,

+ gross.value=ten.thou, long.only=TRUE,

+ utility="mean-variance", utable=utab3,

+ quantile=.7)

> op.q7$new.portfolio / 100

equities bonds cash

0.76 32.70 66.54

In this case (of only three utility values) the quantity it is minimizing is a
weighted average of the two worst utilities. For this example there is very little
change from the min-max solution (and it seems to go more conservative rather
than less conservative).

We can adjust the risk aversion but when utable is given, we need to use the
force.risk.aver control argument. By default the risk aversion in the utility
table that is passed in is taken as what is wanted.

> op.q7r1 <- trade.optimizer(aprice, avar.all, aret.all,

+ gross.value=ten.thou, long.only=TRUE,

+ utility="mean-variance", utable=utab3, quantile=.7,

+ risk.aversion=.01, force.risk.aver=TRUE)

> op.q7r1$new.portfolio / 100

equities bonds cash

1.52 65.41 33.07

13.8 Compact Variance Objects

Usually the full variance matrix is given. In the case of multiple variances,
a three-dimensional array is given where the third dimension represents the

13.8. COMPACT VARIANCE OBJECTS 143

different variance matrices. Computationally, full matrices are the fastest, so
the preferred format is full matrices as long as the memory of the machine on
which the optimization is being done is large enough. This will almost certainly
be the case unless the universe of assets is very large, or there is a large number
of variance matrices.

caution

Unlike when a full matrix is given, there is no mechanism when giving com-
pact variances for the optimizer to ensure that the assets are in the correct
order within the variance. The user needs to take full responsibility that the
asset order in the variances is the same as in the prices argument. This in-
cludes benchmarks, which enjoy some automatic treatment when full matrices
are given.

In addition to full matrices, there are three formats supported:

• simple factor models. These have formula ΛΛT + Ψ where Λ is a matrix
of loadings with dimensions that are the number of assets by the number
of factors, and Ψ is a diagonal matrix containing the specific variances.
This will most likely be the result of a statistical factor model.

• full factor models. These have formula ΛΦΛT + Ψ where Λ is a matrix of
loadings with dimensions that are the number of assets by the number of
factors, Φ is the variance matrix of the factors among themselves, and Ψ
is a diagonal matrix containing the specific variances.

• vech. This is the lower triangle of the variance matrix stacked by column.
So there is the variance of the first asset and the covariances of the first
asset with all of the other assets, then the variance of the second asset and
the covariances of the second asset with assets 3 and onward, etc.

The Variance List

When at least one variance is not full, the variance argument to the optimizers
needs to be a list with special components. The components of the list are:

• vardata: Always required. This is a vector of the actual numbers for the
variance representations all concatenated together. The order of the data
in the representations is:

– full matrix : The first column, the second column, etc. (This is, of
course, the same as the first row, the second row, etc.)

– simple factor model : The loadings for the first asset, the loadings for
the second asset, etc. Then the specific variances.

– full factor model : Each column of the factor variance matrix in turn.
Then the loadings for the first asset, the loadings for the second asset,
etc. Then the specific variances.

– vech: The vech representation.

144 CHAPTER 13. ADVANCED FEATURES

• vartype: Always required. This is a vector of integers with length equal
to the number of variance matrices represented. The integers indicate
the type of representation for each matrix—there is no restriction on the
combinations of types that may be used. The codes for the formats are:

– full matrix : 0

– simple factor model : 1

– full factor model : 2

– vech: 3

• nvarfactors: Required if any representation is a factor model (either
simple or full). When given, this must have length equal to the length of
vartype. The elements of this vector that correspond to a factor model
must contain the number of factors for that model.

• varoffset: Never required, but may add some safety. This is an integer
vector containing the offset for the start of each variance matrix within
the vardata component. The first element is zero, the second is the length
of the data for the first variance matrix, the third is the combined lengths
of the first and second variance matrices, etc. The length of this vector
is the number of matrices given, so the element that would be the total
length of vardata is not given.

Here is an example of putting an object produced by factor.model.stat(from
the BurStFin package) into this format:

> varfac <- factor.model.stat(retmat, out="fact")

> vdata <- c(t(varfac$sdev * varfac$loadings),

+ varfac$uniqueness * varfac$sdev^2)

> vlist <- list(vardata=vdata, vartype=1,

+ nvarfactors=ncol(varfac$loadings))

The vdata object is a vector of the pertinent numbers in the correct order.
Note that the loadings are first multiplied by the standard deviations, then
this matrix is transposed. Likewise the uniquenesses need to be scaled by the
squared standard deviations. Since this is producing a simple factor model, the
type of variance is 1. Finally, the number of factors is given as the number of
columns of the loadings matrix. The vlist object is ready to be passed in as
the variance argument.

caution

Be careful when annualizing a factor model representation. You want each
element of the actual variance to be multiplied by some number—such as 252—
but not every number in the representation is multiplied by the same thing.

Chapter 14

Dregs

This chapter contains topics that don’t seem to belong anywhere else.

14.1 Portfolio Probe Constituents

The pprobe.verify function is useful for seeing if the installation on a partic-
ular machine worked okay. It is far from a full test suite—it merely checks that
all of the functions are present, and that one particular problem optimizes okay.
This can also be used to see which version of Portfolio Probe is present.

14.2 The Objectives

The objective function of an optimization has a numeric value as its result,
and a set of inputs that can be changed. The job of the optimizer is to find the
combination of inputs that achieves the best result for the objective function. By
convention optimizers find the minimum of objective functions. The optimizer
in trade.optimizer follows the convention.

The objective in trade.optimizer is the sum of two quantities: the negative
of the utility (except “minimum variance” and “minimum distance” don’t take
the negative), and the penalty for broken constraints.. The penalty for a broken
constraint is the appropriate element of penalty.constraint times a measure
of how broken the constraint is. The penalties for all of the constraints are
summed to get the penalty.

The same process is done for generating random portfolios. The difference
is that the utility part is zero when random.portfolio is used—so there is only
the penalty part that is minimized.

14.3 Writing C or C++ Code

The C code that underlies the optimization and random portfolio generation
can be incorporated into your own C or C++ programs. There are quite a
few arguments to the C functions for optimization, and some of the arguments
involve a number of variables. Thus it is far from trivial to write the program
calling these functions.

145

146 CHAPTER 14. DREGS

A much more practical approach to using Portfolio Probe within a C++
environment is to use the RInside R package to call the R functions in Portfolio
Probe. So C++ calls R which calls C and results are available back in the
original C++. See the cookbook section of the Portfolio Probe website for a
simple example.

14.4 Bug Reporting

Send email to support@portfolioprobe.com to report any bugs that you find. A
report should include:

• The operating system (including the version) that you are using.

• The version of R or S-PLUS that you are using.

• Give the version component (optimization) or attribute (random portfo-
lios). For example:

> op$version

C.code S.code

"portgen BurSt 1.24" "trade.optimizer 029.029"

> attr(randport, "version")

C.code S.code

"randport BurSt 1.24" "random.portfolio 015"

• A full description of the problem—what happens, and what you wanted
to happen.

• If S creates an error, then give the results of the call:

> traceback()

This displays the state that S was in when the error occurred.

• If possible, send the data for a small problem that reproduces the bug.

• If the bug is sporadic and uses random.portfolio, then also give the
random seed from an object where the bug is observed:

> attr(ranport, "seed")

A reward is given to the first to report a bug in the code or documentation.
Ideas for improving the ease of use or functionality are always welcome.

Bibliography

[Almgren et al., 2005] Almgren, R., Thum, C., Hauptmann, E., and Li, H.
(2005). Equity market impact. Risk.

[Burns, 1998] Burns, P. (1998). S Poetry. http://www.burns-stat.com.

[Burns, 2003a] Burns, P. (2003a). On using statistical factor models in optimiz-
ing long-only portfolios. Working paper, Burns Statistics, http://www.burns-
stat.com/.

[Burns, 2003b] Burns, P. (2003b). Portfolio sharpening. Working paper, Burns
Statistics, http://www.burns-stat.com/.

[Burns, 2011] Burns, P. (2011). The R Inferno. Tutorial, Burns Statistics,
http://www.burns-stat.com/.

[Burns et al., 1998] Burns, P., Engle, R., and Mezrich, J. (1998). Correlations
and volatilities of asynchronous data. The Journal of Derivatives, 5(4).

[diBartolomeo, 2003] diBartolomeo, D. (2003). Portfolio management under
taxes. In Satchell, S. and Scowcroft, A., editors, Advances in Portfolio Con-
struction and Implementation. Butterworth–Heinemann.

[Grinold and Kahn, 2000] Grinold, R. C. and Kahn, R. N. (2000). Active Port-
folio Management. McGraw–Hill.

[Gupton et al., 1997] Gupton, G. M., Finger, C. C., and Bhatia, M. (1997).
CreditMetrics TM—Technical Document. http://www.riskmetrics.com.

[Kallberg and Ziemba, 1983] Kallberg, J. G. and Ziemba, W. T. (1983). Com-
parison of alternative utility functions in portfolio selection problems. Man-
agement Science, 29:1257–1276.

[Michaud, 1998] Michaud, R. O. (1998). Efficient Asset Management. Harvard
Business School Press.

147

Index

120/20 portfolio, 30

abbreviation of function arguments,
20

allowance argument, 29, 30
alpha table, 126–127
alpha.constraint argument, 55
alphas, see expected returns
amortize cost, 99
annualization

information ratio, 74
risk aversion, 123

argument abbreviation, 20
array

three-dimensional, 135, 140, 142
as.matrix function, 89, 90
asset allocation, 79
assets used in optimization, 71, 81
asynchronous data, 91, 103
atable, 131
atable argument, 126

bench.constraint argument, 56–57,
75, 135

bench.weights argument, 34, 72, 75,
92, 103, 105, 107

benchmark
add to variance, 92
alpha table, 126–127
constraint, 74–75, 102, 135
dual, 75, 132–134
variance table, 126–127

benchmark for long-short, 113–114
benchmark-relative utility, 134
bug report, 146
build.constraints function, 43
BurStFin package, 90
buy-hold-sell list, 77, 83

c function, 59, 62, 75
C or C++ code, 145–146

call component, 118
cash flow, 78–79, 85–86
CAUTION, 22, 32, 33, 91, 93, 96,

143, 144
cbind function, 45, 110
cheatsheet, 107–108
class function, 25
close.number argument, 61
comma-separated file, 24, 89, 94
compact variance representation, 142–

144
compare to another program, 116
constraint

absolute linear, 48–49
all, 27
benchmark, 74–75, 102, 135
building linear, 42–48
close number, 61
correlation asset to portfolio, 35
cost, 60
count, 52–54
country, 20
distance, 57–59
expected return, 55, 129–130
linear, 42–52
liquidity, 33, 39–40
long-side linear, 49
market capitalization, 47
monetary, 27–30
number long or short, 54
numerical linear, 46
penalty for breaking, 64, 93, 145
portfolio size, 73, 82
portfolio value, 86
quadratic, 61–64, 100
risk fraction, 33
sector, 20
short-side linear, 49
soft, 64
sum of largest weights, 59–60
threshold, 37–38, 41

148

INDEX 149

tracking error, 20, 56–57, 74–
75, 135

trade, 48–49
trade number, 73
turnover, 73, 75, 83
unsatisfiable, 25–26
utility, 26
variance, 55, 83, 127–129, 135
variance partition, 33, 46
violation, 50–51
weight, 31–60

constraints.realized function, 50
continuously compounded return, 91
conventions, typography, 18
convergence, 105
correlation of assets to portfolio, 35
costs, 95

amortization, 99
asymmetric, 96
constraint, 60
linear, 96
nonlinear, 97
piecewise linear, 100
power law, 98
relative to expected returns, 98–

99
relative to noise, 118
square root, 98
taxes, 99–100

count constraint, 52–54
country constraint, 20
cov.wt function, 90
credit risk, 136–138
csv file, 24, 89, 94
currency, 101

data frame, 89
debugger function, 111
debugging S, 110–111
decay, time, 100
deport function, 23
deport function export function, 94
dest.wt argument, 130, 131
destination

of utility, 131
weight, 130, 131

dispersion, 35
distance

constraint, 57–59
optimization, 77–78

do.call function, 23
do.warn argument, 104–107
dollar neutral portfolio, 30
drop function, 89, 90
dual benchmarks, 75, 132–134
duration, 46

enforce.max.weight argument, 32
error produced by S, 146
examples, 72–79, 82–86, 138–142
existing argument, 103
expected returns, 74

multiple, 130, 132–142
relative to costs, 98–99

factor model, 135
full, 143
fundamental, 135
macroeconomic, 135
simple, 143, 144
statistical, 90–92, 143

factor vs factor, 91
factor.model.stat function, 90, 144
fail.iter argument, 25, 118
feasible solution, 51
file

read, 89
write, 23–24, 94

fitted function, 92
force.risk.aver argument, 132
forced trade

automatic, 32
positions argument, 40

forced.trade argument, 38, 84
funeval.max argument, 116

garbage, 101
GARCH, 136
gen.fail argument, 25
generating random portfolios, 19–26
genetic algorithm, 117
global data, 91, 103
gross value

definition, 30
gross.value argument, 29

head function, 21

illiquid assets, 103
import data into S, 89–90
information ratio

150 INDEX

annualizing, 74
definition, 74
maximize, 74–75, 82, 121

init.fail argument, 25
intersect function, 45
inventory model, 98
iterations.max argument, 25, 116

leverage, 86
library function, 15
limit.cost argument, 60
lin.abs argument, 49
lin.bounds argument, 43
lin.constraint argument, 43
lin.direction argument, 50
lin.style argument, 45, 52
lin.trade argument, 48
linear constraint, 42–52

building, 42–48
liquidity, 32–33, 39–40, 95
log return, 91
long and short lists, 83
long value

definition, 29
long-only portfolio, 71–80
long-only with shorts, 113
long-short portfolio, 81–88
long-side linear constraint, 49
lot

round, 27
size, 94

lower.trade argument, 32, 77, 84

machine memory, 143
marginal contribution to the bench-

mark, 34
market impact, 95
market risk, 136
max.weight argument, 31, 32, 82,

109
maximize information ratio, 74–75,

82, 121
maximum expected return utility, 124
maximum weight, 32
mean-variance

optimization, 76, 84
mean-variance utility, 123
mean-volatility utility, 123
median optimization, 130
memory of the machine, 143

min-max optimization, 130, 132, 141–
142

minimize tracking error, 72
minimize variance, 72
minimum variance utility, 123
miniter argument, 25
missing values

variance estimation, 92
monetary constraints, 27–30, 86
multiple expected returns, 130, 132–

142
multiple time periods, 136
multiple variances, 129, 132–142

net value
definition, 30

nonlinear costs, 97
not optimizing starting solution, 115–

116
ntrade argument, 36, 73, 77, 84

objective function, 124, 145
operating system, 146
optimization

algorithm, 117
distance, 77–78
mean-variance, 76, 84
median, 130
min-max, 130, 132, 141–142
not doing, 115–116
objective, 124, 145
Pareto, see min-max optimiza-

tion
real-time, 86–88
utility-free, 77–78
wrong, 101–104

out.trade argument, 19, 20

Pareto optimization, see min-max
optimization

passive portfolio, 72–73, 132–134
penalty for broken constraint, 93,

145
port.size argument, 36, 73, 75, 82
portfolio

long-only, 71–80
long-short, 81–88
passive, 72–73, 132–134

position
too small, 109

INDEX 151

positions argument, 38–42, 108
pprobe.verify function, 145
prices argument, 71, 81

quadratic constraint, 61–64, 100
quantile argument, 130, 135, 142
quotes in S, 59, 136

R language
instance of S language, 14

R website, 14
random portfolio, 19–26, 116
random portfolio summary, 23
random.portfolio function, 19–27
random.portfolio.utility function, 26
randport.eval function, 22–23, 51
rbind function, 110
read a file, 89
read.table function, 89
real-time optimization, 86–88
rep function, 77, 83, 84
repeat (S construct), 88
return

continuously compounded, 91
log, 91
simple, 91

rf.style argument, 34
rights issue, 102
risk

credit, 136–138
market, 136

risk aversion
invariance of mean-variance, 123
invariance of mean-volatility, 123
parameter, 123, 132

risk tolerance, 123
risk.aversion argument, 132
risk.fraction argument, 33–35, 73
rival forecasts, 135–136
round lot, 27

S code note, 18–20, 23, 24, 45, 47,
59, 62, 77, 84, 88, 89, 91,
118, 135, 136, 139, 140

S function
as.matrix, 89, 90
build.constraints, 43
c, 59, 62, 75
cbind, 45, 110
class, 25

constraints.realized, 50
cov.wt, 90
debugger, 111
deport, 23, 94
do.call, 23
drop, 89, 90
factor.model.stat, 90, 144
fitted, 92
head, 21
intersect, 45
library, 15
pprobe.verify, 145
random.portfolio, 19–27
random.portfolio.utility, 26
randport.eval, 22–23, 51
rbind, 110
read.table, 89
rep, 77, 83, 84
summary, 23, 93
tail, 21
threeDarr, 135, 137, 140
traceback, 111, 146
trade.optimizer, 71–88
update, 118
valuation, 65–69

S language
debugging, 110–111
includes R, 14
multi-line command, 18

S-PLUS website, 14
scale.cost argument, 99
scenario analysis, 138–142
sector constraint, 20
sense, making, 101
short value

definition, 29
short-side linear constraint, 49
shrinkage, see Bayesian
simple return, 91
small portfolio, 109
soft constraint, 64
split, stock, 102
stale prices, 103
start

not optimizing, 115–116
start.sol argument, 103, 116
statistical factor model, 90–92, 143,

144
stock split, 102
stringency argument, 115, 118

152 INDEX

sum of largest weights constraint,
59–60

summary function, 23, 93

tab-separated file, 89, 94
tail function, 21
taxes, 99–100
three-dimensional array, 135, 140,

142
threeDarr function, 135, 137, 140
threshold argument, 37–38, 107
threshold constraint

positions argument, 41
time decay, 100
tol.positions argument, 41
traceback function, 111, 146
tracking error, 133

constraint, 20, 56–57, 74–75
minimize, 72

trade
too trivial, 109

trade.optimizer function, 71–88
trading costs, see costs
transaction costs, see costs
troubleshooting, 109–110
turnover, see trade.value argument
turnover argument, 29, 73, 75, 82,

83, 85
txt file, 89, 94
typography conventions, 18

unchanging utility, 109
universe.trade argument, 32, 41, 77,

84, 85
update function, 118
upper.trade argument, 32, 77, 84
utable argument, 131, 142
utility

benchmark-relative, 134
constraint, 26
definitions, 121
destination, 131
table, 131–132, 141–142
unchanging, 109
zero, 109

utility-free optimization, 77–78

valuation
function, 65–69
too small, 109

value constraints, 86
var.constraint argument, 55, 104
variance, 90–92

adding benchmark, 92
argument, 143–144
compact representation, 142–144
constraint, 55, 83, 127–129, 135
factor model, see factor model
fraction, 33–35
minimize, 72
missing value treatment, 92
multiple, 129, 132–142
table, 126–127, 131
vech representation, 143

variance partition constraint, 46
vech representation, 143
version component, 146
violation of constraints, 50–51
volume, average daily, 33, 98
vtable argument, 126

warnings, suppressing, 104–107
weight

constraint, 31–60
destination, 130, 131
sum of largest constraint, 59–

60
write a file, 23–24, 94
wrong optimization, 101–104

zero utility, 109

	Orientation
	Why Portfolio Probe?
	Overview of Functionality
	Necessary Tools
	Installing the Software
	Loading the Software
	Road Map
	Typography Conventions

	Generating Random Portfolios
	The Command
	Working with Random Portfolios
	Valuation
	Small Selections
	Evaluating Portfolios
	Summary

	Exporting Random Portfolios
	Writing monetary value

	Create a Matrix of Positions or Values
	Combining Random Portfolio Objects
	Unsatisfiable and Difficult Constraints
	Adding a Utility Constraint
	Going Farther

	Constraints
	Summary of All Constraints
	Round Lots

	Monetary Value of the Portfolio
	Long-only Portfolios
	Long-short Portfolios

	Limits on Assets
	max.weight
	universe.trade
	lower.trade and upper.trade
	risk.fraction

	Number of Assets
	Number of Assets to Trade
	Number of Assets in the Portfolio

	Threshold Constraints
	Trade Thresholds
	Portfolio Thresholds
	Summary of Threshold Inputs

	Forced Trades
	Positions
	Portfolio constraints
	Trade constraints
	Forced constraints
	Universe constraints
	Threshold constraints
	Tolerance
	Summary of positions inputs

	Linear Constraints
	Building Constraints
	Bounds and lin.style
	Linear Constraints on Variance Partitions
	Numerical Constraints: Risk Factors
	Numerical Constraints: Market Capitalization
	Mixing Numerical and Categorical Constraints
	Portfolio Constraints versus Trade Constraints
	Net Constraints versus Gross Constraints
	Long-side Constraints and Short-side Constraints
	Looking at the Effect of the Constraints
	Evaluating Un-imposed Constraints
	Inspecting Linear Constraints

	Count Constraints
	Alpha (Expected Return) Constraints
	Variance Constraints
	Tracking Error (Benchmark) Constraints
	Single Upper Bound
	Scaling
	Lower and Upper Bounds
	Multiple Benchmarks
	Advanced Use

	Distance
	Alternative prices
	Multiple distances

	Sums of Largest Weights
	Cost Constraints
	Number of Positions to Close
	Quadratic Constraints
	Add Constraints to the Variance
	Impose Constraint Bounds
	Dummy Run
	Check for Benchmark
	Constraints out of Utility
	Actual Computation

	Constraint Penalties and Soft Constraints

	Valuation of Portfolios
	Single Portfolio
	Summary Statistics
	Weights
	Collapsing Values

	Random Portfolios
	Compute Returns
	Collapse into Categories
	Summary

	Optimizing Long-Only Portfolios
	Required Inputs
	Monetary Value
	Utility

	Examples for Passive Portfolios
	Minimize the Variance of the Portfolio
	Minimize Tracking Error

	Examples for Active Portfolios
	Maximize the Information Ratio
	The Information Ratio with a Tracking Error Constraint
	Maximize Benchmark-relative Information Ratio
	Mean-Variance Optimization
	Mean-Volatility Optimization
	Buy-Hold-Sell List

	Utility-free Optimization
	Managing Cash Flow
	Injecting Money into a Portfolio
	Extracting Money out of a Portfolio

	Asset Allocation
	Going Farther

	Optimizing Long-Short Portfolios
	Required Inputs
	Monetary Value
	Utility

	Examples
	Maximize the Information Ratio
	Maximize Return with a Bound on the Variance
	Minimize Variance Given a Long List and a Short List
	Mean-Variance Optimization

	Managing Cash Flow
	Injecting Money into a Portfolio
	Extracting Money out of a Portfolio

	Money Constraints
	Real-Time Monitoring
	Going Farther

	General Use
	Setting Up Data
	Prices and Other Imports
	Variance Matrix
	Adding a Benchmark to the Variance

	The Random Generation or Optimization
	Post-Optimization
	Explore the Trade
	Export the Trade

	Going Farther

	Trading Costs
	Background
	Specifying Costs
	Linear Costs
	Nonlinear Costs

	Power Laws
	On Scaling Costs Relative to Utility
	Costs Due to Taxes
	Going Farther

	Practicalities and Troubleshooting
	Easy Ways to Be Wrong
	Data Mangling
	Input Mangling

	Suppressing Warning Messages
	Cheatsheets
	Implied Ranges
	Threshold Inputs
	Positions Inputs

	Troubleshooting
	Utility Problems
	Portfolio Problems

	S Language Problems and Solutions
	Creating Matrices
	Debugging

	Special Instructions
	Special Instruction 1: Long-only when shorts exist
	Special Instruction 2: Benchmark in long-short optimization

	Adjusting Optimization Speed and Quality
	Staying at a Given Solution
	Reducing Time Use
	The Optimization Process
	Improving Quality
	Testing Optimization Quality

	Utility
	Maximum Information Ratio
	Example

	Mean-Variance Utility
	Mean-Volatility Utility
	Minimum Variance
	Maximum Expected Return
	Minimum Distance
	Going Farther

	Advanced Features
	Multiplicity
	Alpha and Variance Tables
	Variance Constraints
	Expected Return Constraints
	Multiple Utilities
	Utility Tables
	Multiplicity Examples
	Dual Benchmarks
	Benchmark-relative Utility and Absolute Variance Constraint
	Rival Variance Forecasts
	Multiple Time Periods
	Credit Risk
	Multiple Scenarios

	Compact Variance Objects
	The Variance List

	Dregs
	Portfolio Probe Constituents
	The Objectives
	Writing C or C++ Code
	Bug Reporting

